Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
984eacb3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
984eacb3
编写于
3月 18, 2022
作者:
S
ShenLiang
提交者:
GitHub
3月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[DataParallel]Support control flow in new DP (#40593)
* fix bug * fix bug
上级
755a6c53
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
494 addition
and
60 deletion
+494
-60
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+1
-1
paddle/fluid/distributed/collective/reducer.cc
paddle/fluid/distributed/collective/reducer.cc
+286
-39
paddle/fluid/distributed/collective/reducer.h
paddle/fluid/distributed/collective/reducer.h
+20
-3
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+19
-17
python/paddle/fluid/tests/unittests/parallel_dygraph_gradient_check_in_eager_mode.py
...nittests/parallel_dygraph_gradient_check_in_eager_mode.py
+163
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel.py
...uid/tests/unittests/test_parallel_dygraph_dataparallel.py
+5
-0
未找到文件。
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
984eacb3
cc_library
(
processgroup SRCS ProcessGroup.cc DEPS phi phi_api eager_api
)
cc_library
(
eager_reducer SRCS reducer.cc DEPS eager_api processgroup phi phi_api
)
cc_library
(
eager_reducer SRCS reducer.cc DEPS eager_api processgroup phi phi_api
string_helper
)
if
(
WITH_DISTRIBUTE
)
cc_library
(
processgroup_gloo SRCS ProcessGroupGloo.cc DEPS phi phi_api eager_api gloo_wrapper
)
...
...
paddle/fluid/distributed/collective/reducer.cc
浏览文件 @
984eacb3
...
...
@@ -17,6 +17,20 @@
namespace
paddle
{
namespace
distributed
{
static
Backend
TransToBackend
(
platform
::
Place
place
)
{
static
const
std
::
map
<
phi
::
AllocationType
,
Backend
>
type_backend
=
{
{
phi
::
AllocationType
::
GPU
,
Backend
::
GPU
},
{
phi
::
AllocationType
::
CPU
,
Backend
::
CPU
},
};
phi
::
AllocationType
type
=
place
.
GetType
();
auto
it
=
type_backend
.
find
(
type
);
PADDLE_ENFORCE_EQ
(
it
!=
type_backend
.
end
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Place type (%s) is not supported. "
,
place
));
return
it
->
second
;
}
std
::
vector
<
std
::
vector
<
size_t
>>
Eager_AssignGroupBySize
(
const
std
::
vector
<
Tensor
>
tensors
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
...
...
@@ -297,10 +311,18 @@ EagerReducer::EagerReducer(
std
::
dynamic_pointer_cast
<
egr
::
GradNodeAccumulation
>
(
grad_node
);
accumulation_grad_node
->
RegisterReduceHook
(
std
::
make_shared
<
egr
::
CppTensorVoidHook
>
(
reduce_hook
));
gradnode_index_map_
[
grad_node
.
get
()]
=
global_var_index
;
}
vars_marked_ready_
.
resize
(
tensors_
.
size
(),
false
);
local_used_vars_
.
resize
(
tensors_
.
size
(),
0
);
if
(
find_unused_vars_each_step_
)
{
global_used_vars_
=
paddle
::
experimental
::
empty
(
ScalarArray
({
static_cast
<
int32_t
>
(
tensors_
.
size
())}),
DataType
::
INT32
,
TransToBackend
(
inner_place_
));
}
}
std
::
shared_ptr
<
egr
::
GradNodeBase
>
EagerReducer
::
GetGradNodeFromTensor
(
...
...
@@ -341,21 +363,10 @@ void EagerReducer::InitializeGroups(
}
else
{
// process the dense gradient.
InitializeDenseGroups
(
tensor_indices_
,
&
group
);
experimental
::
Backend
backend
;
switch
(
inner_place_
.
GetType
())
{
case
phi
::
AllocationType
::
GPU
:
backend
=
experimental
::
Backend
::
GPU
;
break
;
case
phi
::
AllocationType
::
CPU
:
backend
=
experimental
::
Backend
::
CPU
;
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Place type (%s) is not supported. "
,
inner_place_
));
break
;
}
// experimental::Backend backend = TransToBackend(inner_place_);
group
.
dense_contents_
=
paddle
::
experimental
::
empty
(
ScalarArray
({
group
.
all_length_
}),
group
.
dtype_
,
backend
);
ScalarArray
({
group
.
all_length_
}),
group
.
dtype_
,
TransToBackend
(
inner_place_
));
}
// map tensors to this group by VariableLocator
...
...
@@ -418,6 +429,53 @@ void EagerReducer::InitializeDenseGroups(
p_group
->
all_length_
=
all_length
;
}
void
EagerReducer
::
TraverseBackwardGraph
(
const
std
::
vector
<
Tensor
>
&
outputs
)
{
std
::
queue
<
egr
::
GradNodeBase
*>
queue
;
std
::
set
<
egr
::
GradNodeBase
*>
visited
;
for
(
const
auto
&
output
:
outputs
)
{
auto
*
auto_grad_meta
=
static_cast
<
egr
::
AutogradMeta
*>
(
output
.
get_autograd_meta
());
if
(
!
auto_grad_meta
)
continue
;
auto
shared_grad_node
=
auto_grad_meta
->
GetMutableGradNode
();
if
(
shared_grad_node
==
nullptr
||
shared_grad_node
.
get
()
==
nullptr
||
auto_grad_meta
->
StopGradient
())
{
continue
;
}
egr
::
GradNodeBase
*
grad_node
=
shared_grad_node
.
get
();
queue
.
emplace
(
grad_node
);
}
while
(
!
queue
.
empty
())
{
egr
::
GradNodeBase
*
node
=
queue
.
front
();
queue
.
pop
();
const
std
::
vector
<
std
::
vector
<
egr
::
Edge
>>
&
edges
=
node
->
GetEdges
();
for
(
size_t
i
=
0
;
i
<
edges
.
size
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
edges
[
i
].
size
();
j
++
)
{
const
egr
::
Edge
&
edge
=
edges
[
i
][
j
];
auto
next_node_shared
=
edge
.
GetMutableGradNode
();
if
(
!
next_node_shared
||
!
next_node_shared
.
get
())
{
continue
;
}
auto
*
next_node
=
next_node_shared
.
get
();
const
bool
was_inserted
=
visited
.
insert
(
next_node
).
second
;
if
(
was_inserted
)
{
queue
.
emplace
(
next_node
);
}
}
}
}
for
(
const
auto
&
it
:
gradnode_index_map_
)
{
if
(
visited
.
count
(
it
.
first
)
==
0
)
{
unused_vars_
.
push_back
(
it
.
second
);
VLOG
(
3
)
<<
"[Rank "
<<
process_group_
->
GetRank
()
<<
"]: "
<<
"Tensor "
<<
tensors_
[
it
.
second
].
name
()
<<
" at index "
<<
it
.
second
<<
" is marked as unused."
;
}
}
}
void
EagerReducer
::
PrepareForBackward
(
const
std
::
vector
<
Tensor
>
&
outputs
)
{
VLOG
(
3
)
<<
"after forward, then reset count for backward."
;
grad_need_hooks_
=
true
;
...
...
@@ -429,6 +487,51 @@ void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
// reinitialize vars_marked_ready_ for next iteration
vars_marked_ready_
.
clear
();
vars_marked_ready_
.
resize
(
tensors_
.
size
(),
false
);
PADDLE_ENFORCE_EQ
(
groups_need_finalize_
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"A serious error has occurred here. Please "
"set find_unused_parameters=True to traverse backward graph "
"in each step to prepare reduce in advance. If you have "
"set, There may be several reasons for this error: "
"1) Please note that all forward outputs derived from the module "
"parameters must participate in the calculation of losses and "
"subsequent gradient calculations. If not, the wrapper will hang, "
"waiting for autograd to generate gradients for these parameters. "
"you can use detach or stop_gradient to make the unused parameters "
"detached from the autograd graph. "
"2) Used multiple forwards and one backward. You may be able to wrap "
"multiple forwards in a model."
));
// The first var to trigger the unused parameter
has_marked_unused_vars_
=
false
;
if
(
find_unused_vars_once_
||
find_unused_vars_each_step_
)
{
unused_vars_
.
clear
();
TraverseBackwardGraph
(
outputs
);
// only check once in first step
find_unused_vars_once_
=
false
;
}
if
(
find_unused_vars_each_step_
&&
unused_vars_
.
empty
())
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"All parameters are involved in the backward pass. "
"It is recommended to set find_unused_parameters to False "
"to improve performance. However, if unused parameters "
"appear in subsequent iterative training, then an error "
"will occur. Please make it clear that in the subsequent "
"training, there will be no parameters that are not used "
"in the backward pass, and then set find_unused_parameters"
;
}
if
(
unused_vars_
.
size
()
==
tensors_
.
size
())
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"There is no parameter in the device involved "
"in the backward calculation. If there are "
"parameters on other devices involved in the "
"backward, then a serious error will occur here."
;
}
}
void
EagerReducer
::
AddDistHook
(
size_t
var_index
)
{
...
...
@@ -446,36 +549,104 @@ void EagerReducer::AddDistHook(size_t var_index) {
auto
&
tensor
=
tensors_
[
var_index
];
const
auto
&
grad_node
=
GetGradNodeFromTensor
(
&
tensor
);
VLOG
(
3
)
<<
"
Var["
<<
var_index
<<
"] ["
<<
(
*
grad_node
)
.
name
()
<<
"] arrived and triggered disthook"
;
VLOG
(
3
)
<<
"
Tensor["
<<
var_index
<<
"] ["
<<
tensors_
[
var_index
]
.
name
()
<<
"
@Grad
] arrived and triggered disthook"
;
local_used_vars_
[
var_index
]
=
1
;
if
(
!
has_marked_unused_vars_
)
{
has_marked_unused_vars_
=
true
;
for
(
const
auto
unused_index
:
unused_vars_
)
{
MarkVarReady
(
unused_index
,
false
);
}
}
MarkVarReady
(
var_index
,
true
);
}
void
EagerReducer
::
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
)
{
VLOG
(
3
)
<<
"Tensor["
<<
var_index
<<
"]["
<<
tensors_
[
var_index
].
name
()
<<
"] is marked ready."
;
// error happened, if the var is ready before.
if
(
vars_marked_ready_
[
var_index
])
{
auto
error_info
=
string
::
Sprintf
(
"Error happened, when parameter[%d][%s] has been ready before. "
"Please set find_unused_parameters=True to traverse backward graph "
"in each step to prepare reduce in advance. If you have set, "
"there may be several reasons for this error: "
"1) In multiple reentrant backward phase, some parameters are reused."
"2) Using model parameters outside of forward function. Please "
"make sure that model parameters are not shared in concurrent "
"forward-backward passes."
,
var_index
,
tensors_
[
var_index
].
name
());
PADDLE_ENFORCE_EQ
(
has_marked_unused_vars_
,
false
,
platform
::
errors
::
PreconditionNotMet
(
error_info
));
error_info
+=
"3) Unused parameters retrieval is incorrect. "
"The return value of forward will be used to retrieve"
" the unused parameters of the entire model. These "
"gradients of unused parameters will not be synchronized "
"between multiple cards. However, if the unused "
"parameters participate in the backward calculation "
"again at a later time (e.g. after the forward function, "
"the loss calculation uses the unused "
"paramters of the forward and trigger backward), "
"its gradient will be wrong."
;
PADDLE_ENFORCE_EQ
(
has_marked_unused_vars_
,
true
,
platform
::
errors
::
PreconditionNotMet
(
error_info
));
}
else
{
vars_marked_ready_
[
var_index
]
=
true
;
}
groups_need_finalize_
=
true
;
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
const
auto
group_index
=
var_locator
.
group_index
;
const
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
&
group
=
groups_
[
group_index
];
auto
&
group_tensor
=
group
.
dense_tensors_
[
inside_group_index
];
auto
*
autograd_meta
=
tensors_
[
var_index
].
get_autograd_meta
();
auto
&
grad_tensor
=
static_cast
<
egr
::
AutogradMeta
*>
(
autograd_meta
)
->
Grad
();
group_tensor
.
ShareDataWith
(
*
(
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
grad_tensor
.
impl
())))
.
Resize
({
grad_tensor
.
numel
()});
vars_marked_ready_
[
var_index
]
=
true
;
const
auto
length
=
group
.
length_
[
inside_group_index
];
if
(
is_used_var
)
{
auto
*
autograd_meta
=
tensors_
[
var_index
].
get_autograd_meta
();
auto
&
grad_tensor
=
static_cast
<
egr
::
AutogradMeta
*>
(
autograd_meta
)
->
Grad
();
group_tensor
.
ShareDataWith
(
*
(
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
grad_tensor
.
impl
())))
.
Resize
({
grad_tensor
.
numel
()});
}
else
{
// TODO(shenliang03): maybe save the memory by avoiding tensor construction
if
(
!
group_tensor
.
initialized
())
{
group_tensor
.
Resize
({
static_cast
<
int64_t
>
(
length
)});
group_tensor
.
mutable_data
(
inner_place_
,
group
.
dtype_
);
}
if
(
HasGrad
(
var_index
))
{
VLOG
(
3
)
<<
"Tensor["
<<
tensors_
[
var_index
].
name
()
<<
"] has grad"
;
auto
grad_tensor
=
egr
::
EagerUtils
::
mutable_grad
(
tensors_
[
var_index
]);
group_tensor
.
ShareDataWith
(
*
(
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
grad_tensor
->
impl
())))
.
Resize
({
length
});
}
else
{
VLOG
(
3
)
<<
"Tensor["
<<
tensors_
[
var_index
].
name
()
<<
"] doesn't have grad"
;
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
inner_place_
);
group_tensor
.
Resize
({
static_cast
<
int64_t
>
(
length
)});
phi
::
funcs
::
set_constant
(
*
dev_ctx
,
&
group_tensor
,
0.0
);
}
}
if
(
--
group
.
pending_
==
0
)
{
// can start allreduce
MarkGroupReady
(
group_index
);
}
if
(
next_group_
==
groups_
.
size
())
{
FinalizeBackward
();
}
}
void
EagerReducer
::
MarkGroupReady
(
size_t
group_index
)
{
...
...
@@ -501,6 +672,92 @@ void EagerReducer::MarkGroupReady(size_t group_index) {
}
}
bool
EagerReducer
::
HasGrad
(
size_t
var_index
)
{
auto
grad
=
egr
::
EagerUtils
::
mutable_grad
(
tensors_
[
var_index
]);
if
(
grad
&&
grad
->
is_initialized
())
{
return
true
;
}
else
{
return
false
;
}
}
void
EagerReducer
::
ProcessUnusedDenseVars
()
{
// The calculation stream must be used here to
// avoid conflicts with communication.
VLOG
(
3
)
<<
"Local used vars : "
<<
string
::
join_strings
(
local_used_vars_
,
','
);
const
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
inner_place_
);
auto
*
global_used_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
global_used_vars_
.
impl
())
.
get
();
framework
::
TensorFromVector
<
int32_t
>
(
local_used_vars_
,
*
dev_ctx
,
global_used_tensor
);
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
ReduceOp
::
SUM
;
std
::
vector
<
Tensor
>
reduce_tensors
=
{
global_used_vars_
};
process_group_
->
AllReduce
(
reduce_tensors
,
opts
)
->
Synchronize
();
framework
::
TensorToVector
<
int
>
(
*
global_used_tensor
,
*
dev_ctx
,
&
local_used_vars_
);
dev_ctx
->
Wait
();
// sync compute stream to get global used var message,
// but maybe affect speed performance
VLOG
(
3
)
<<
"Global used vars : "
<<
string
::
join_strings
(
local_used_vars_
,
','
);
for
(
const
auto
var_index
:
unused_vars_
)
{
const
bool
global_unused
=
(
local_used_vars_
[
var_index
]
==
0
);
// global used but local unused, set grad
VLOG
(
3
)
<<
"[Rank "
<<
process_group_
->
GetRank
()
<<
"]: "
<<
"Var ["
<<
var_index
<<
"] ["
<<
tensors_
[
var_index
].
name
()
<<
"] global_unused: "
<<
global_unused
<<
" has grad: "
<<
HasGrad
(
var_index
);
if
(
!
global_unused
)
{
VLOG
(
3
)
<<
"Set Tensor["
<<
var_index
<<
"]'s Grad for [Rank "
<<
process_group_
->
GetRank
()
<<
"]"
;
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
const
auto
group_index
=
var_locator
.
group_index
;
const
auto
&
group
=
groups_
[
group_index
];
const
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
&
src_tensor
=
group
.
dense_tensors_
[
inside_group_index
];
Tensor
grad_value
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
src_tensor
));
auto
dest_var_base
=
tensors_
[
var_index
];
auto
grad_tensor
=
egr
::
EagerUtils
::
mutable_grad
(
dest_var_base
);
grad_tensor
->
copy_
(
grad_value
,
inner_place_
,
true
);
grad_tensor
->
reshape
(
dest_var_base
.
shape
());
}
}
}
void
EagerReducer
::
FinalizeBackward
()
{
groups_need_finalize_
=
false
;
grad_need_hooks_
=
false
;
for
(
auto
&
group
:
groups_
)
{
group
.
task
->
Synchronize
();
}
for
(
auto
&
group
:
groups_
)
{
group
.
SplitTensors
(
inner_place_
);
}
if
(
find_unused_vars_each_step_
)
{
ProcessUnusedDenseVars
();
local_used_vars_
.
clear
();
local_used_vars_
.
resize
(
tensors_
.
size
(),
0
);
VLOG
(
3
)
<<
"ProcessUnusedDenseVars is finished."
;
}
VLOG
(
3
)
<<
"In the batch, Reducer is finished."
;
}
void
EagerReducer
::
FusedAllReduceSchedule
(
EagerGroup
*
group
,
const
int
curr_group_index
)
{
// The overall timeline: concat > div_nranks > allreduce > split
...
...
@@ -513,24 +770,14 @@ void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
group
->
ConcatTensors
(
inner_place_
);
// div nranks
double
scaling
=
1.0
/
nranks_
;
paddle
::
experimental
::
scale_
(
group
->
dense_contents_
,
scaling
,
0.0
,
false
);
paddle
::
experimental
::
scale_
(
group
->
dense_contents_
,
1.0
/
nranks_
,
0.0
,
false
);
// all_reduce
std
::
vector
<
Tensor
>
reduce_tensors
=
{
group
->
dense_contents_
};
tasks_
.
push_back
(
process_group_
->
AllReduce
(
reduce_tensors
,
opts
)
);
group
->
task
=
process_group_
->
AllReduce
(
reduce_tensors
,
opts
);
if
(
tasks_
.
size
()
==
groups_
.
size
())
{
for
(
size_t
index
=
0
;
index
<
tasks_
.
size
();
index
++
)
{
auto
&
task
=
tasks_
.
back
();
task
->
Synchronize
();
tasks_
.
pop_back
();
}
for
(
size_t
index
=
0
;
index
<
groups_
.
size
();
index
++
)
{
auto
&
group
=
groups_
[
index
];
group
.
SplitTensors
(
inner_place_
);
}
}
// split in FinalizeBackward()
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
EagerGroup
&
group
)
{
...
...
paddle/fluid/distributed/collective/reducer.h
浏览文件 @
984eacb3
...
...
@@ -28,6 +28,8 @@
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/ext_compat_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/utils/string/string_helper.h"
namespace
paddle
{
namespace
distributed
{
...
...
@@ -35,6 +37,7 @@ using Tensor = paddle::experimental::Tensor;
using
Scalar
=
paddle
::
experimental
::
ScalarBase
<
paddle
::
experimental
::
Tensor
>
;
using
ScalarArray
=
paddle
::
experimental
::
ScalarArrayBase
<
paddle
::
experimental
::
Tensor
>
;
using
Backend
=
paddle
::
experimental
::
Backend
;
std
::
vector
<
std
::
vector
<
size_t
>>
Eager_AssignGroupBySize
(
const
std
::
vector
<
Tensor
>
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
...
...
@@ -61,6 +64,9 @@ class EagerGroup {
// external message of group
phi
::
DataType
dtype_
;
// help to sync
std
::
shared_ptr
<
ProcessGroup
::
Task
>
task
;
// context is used to select the stream for concat
void
ConcatTensors
(
const
platform
::
Place
&
);
...
...
@@ -98,6 +104,10 @@ class EagerReducer {
void
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
);
void
MarkGroupReady
(
const
size_t
group_index
);
void
FusedAllReduceSchedule
(
EagerGroup
*
group
,
const
int
curr_group_index
);
void
FinalizeBackward
();
void
TraverseBackwardGraph
(
const
std
::
vector
<
Tensor
>
&
outputs
);
void
ProcessUnusedDenseVars
();
bool
HasGrad
(
size_t
var_index
);
private:
std
::
vector
<
Tensor
>
tensors_
;
...
...
@@ -105,7 +115,6 @@ class EagerReducer {
std
::
vector
<
bool
>
is_sparse_gradient_
;
std
::
shared_ptr
<
distributed
::
ProcessGroup
>
process_group_
;
std
::
vector
<
size_t
>
group_size_limits_
;
bool
find_unused_vars_each_step_
;
std
::
vector
<
EagerGroup
>
groups_
;
std
::
vector
<
TensorLocator
>
variable_locators_
;
...
...
@@ -113,12 +122,20 @@ class EagerReducer {
platform
::
Place
inner_place_
;
size_t
next_group_
=
0
;
int64_t
nranks_
=
-
1
;
std
::
vector
<
std
::
shared_ptr
<
paddle
::
distributed
::
ProcessGroup
::
Task
>>
tasks_
;
bool
grad_need_hooks_
{
false
};
std
::
vector
<
bool
>
vars_marked_ready_
;
std
::
vector
<
int
>
local_used_vars_
;
std
::
vector
<
int32_t
>
local_used_vars_
;
// Following variables are to help unused vars
std
::
vector
<
size_t
>
unused_vars_
;
std
::
map
<
egr
::
GradNodeBase
*
,
size_t
>
gradnode_index_map_
;
bool
has_marked_unused_vars_
{
false
};
bool
find_unused_vars_each_step_
{
false
};
bool
find_unused_vars_once_
{
true
};
bool
groups_need_finalize_
{
false
};
Tensor
global_used_vars_
;
};
}
// namespace distributed
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
984eacb3
...
...
@@ -327,23 +327,25 @@ static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
grad
=
meta
->
MutableGrad
();
}
if
(
grad
->
is_selected_rows
())
{
auto
selected_rows
=
std
::
dynamic_pointer_cast
<
phi
::
SelectedRows
>
(
grad
->
impl
());
if
(
selected_rows
->
mutable_value
()
->
IsInitialized
())
{
selected_rows
->
mutable_rows
()
->
clear
();
selected_rows
->
mutable_value
()
->
clear
();
}
}
else
if
(
grad
->
is_dense_tensor
())
{
if
(
grad
->
initialized
())
{
if
(
set_to_zero
)
{
grad
->
set_impl
(
paddle
::
experimental
::
zeros_like
(
*
grad
).
impl
());
}
else
{
VLOG
(
4
)
<<
"Gradient of "
<<
self
->
tensor
.
name
()
<<
" is initialized, will be released."
;
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
grad
->
impl
());
dense_tensor
->
MoveMemoryHolder
();
if
(
grad
->
impl
())
{
if
(
grad
->
is_selected_rows
())
{
auto
selected_rows
=
std
::
dynamic_pointer_cast
<
phi
::
SelectedRows
>
(
grad
->
impl
());
if
(
selected_rows
->
mutable_value
()
->
IsInitialized
())
{
selected_rows
->
mutable_rows
()
->
clear
();
selected_rows
->
mutable_value
()
->
clear
();
}
}
else
if
(
grad
->
is_dense_tensor
())
{
if
(
grad
->
initialized
())
{
if
(
set_to_zero
)
{
grad
->
set_impl
(
paddle
::
experimental
::
zeros_like
(
*
grad
).
impl
());
}
else
{
VLOG
(
4
)
<<
"Gradient of "
<<
self
->
tensor
.
name
()
<<
" is initialized, will be released."
;
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
grad
->
impl
());
dense_tensor
->
MoveMemoryHolder
();
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_gradient_check_in_eager_mode.py
0 → 100644
浏览文件 @
984eacb3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
os
import
paddle
import
numpy
as
np
import
paddle.distributed
as
dist
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
import
paddle.fluid.core
as
core
paddle
.
seed
(
1024
)
np
.
random
.
seed
(
2021
)
batch
=
5
in_dim
=
10
out_dim
=
20
def
init_process_group
(
strategy
=
None
):
nranks
=
ParallelEnv
().
nranks
rank
=
ParallelEnv
().
local_rank
is_master
=
True
if
rank
==
0
else
False
store
=
paddle
.
fluid
.
core
.
TCPStore
(
"127.0.0.1"
,
6174
,
is_master
,
nranks
)
group
=
core
.
ProcessGroupNCCL
(
store
,
rank
,
nranks
)
return
group
class
SimpleNet
(
fluid
.
Layer
):
def
__init__
(
self
,
train_id
):
super
(
SimpleNet
,
self
).
__init__
()
self
.
w1
=
self
.
create_parameter
(
shape
=
[
in_dim
,
out_dim
],
dtype
=
"float32"
)
self
.
w2
=
self
.
create_parameter
(
shape
=
[
in_dim
,
out_dim
],
dtype
=
"float32"
)
self
.
share_net
=
Linear
(
out_dim
,
10
)
self
.
unused_param
=
self
.
create_parameter
(
shape
=
[
out_dim
,
in_dim
],
dtype
=
"float64"
)
# just for test sync_params_buffers
# self.register_buffer("queue", paddle.randn([10, 5]))
# self.queue = paddle.nn.functional.normalize(self.queue, axis=0)
# self.register_buffer("queue_ptr", paddle.zeros([1], 'int64'))
self
.
trainer_id
=
train_id
def
forward
(
self
,
x
):
is_use
=
(
paddle
.
equal_all
(
x
,
paddle
.
ones
(
shape
=
(
batch
,
in_dim
))).
numpy
()[
0
]
and
self
.
trainer_id
==
1
)
if
is_use
:
tmp
=
paddle
.
matmul
(
x
,
self
.
w1
)
else
:
tmp
=
paddle
.
matmul
(
x
,
self
.
w2
)
return
self
.
share_net
(
tmp
)
class
TestDistTraning
(
unittest
.
TestCase
):
def
test_multiple_gpus
(
self
):
dist
.
init_parallel_env
()
self
.
trainer_id
=
dist
.
get_rank
()
process_group
=
init_process_group
()
self
.
pg
=
process_group
with
_test_eager_guard
():
model_a
=
SimpleNet
(
self
.
trainer_id
)
model_b
=
SimpleNet
(
self
.
trainer_id
)
state_dict
=
model_a
.
state_dict
()
model_b
.
set_state_dict
(
state_dict
)
model_a
=
paddle
.
DataParallel
(
model_a
,
find_unused_parameters
=
True
,
process_group
=
process_group
)
model_b
=
paddle
.
DataParallel
(
model_b
,
find_unused_parameters
=
True
,
process_group
=
process_group
)
ones_input
=
paddle
.
ones
(
shape
=
(
batch
,
in_dim
))
ones_input
.
stop_gradient
=
True
w1_grad_sum
=
np
.
zeros
((
in_dim
,
out_dim
),
dtype
=
'float32'
)
w2_grad_sum
=
np
.
zeros
((
in_dim
,
out_dim
),
dtype
=
'float32'
)
for
step_id
in
range
(
5
):
print
(
"=============="
,
step_id
)
random_input
=
paddle
.
rand
(
shape
=
(
batch
,
in_dim
))
random_input
.
stop_gradient
=
True
if
step_id
%
2
==
0
:
out_a
=
model_a
(
random_input
)
out_b
=
model_b
(
random_input
)
else
:
out_a
=
model_a
(
ones_input
)
out_b
=
model_b
(
ones_input
)
out_a
.
sum
().
backward
()
out_b
.
sum
().
backward
()
self
.
check_gradient
(
model_a
.
parameters
())
self
.
check_gradient
(
model_b
.
parameters
())
# test acc gradient
w1_grad_sum
=
self
.
check_acc
(
model_a
.
_layers
.
w1
.
grad
,
w1_grad_sum
,
model_b
.
_layers
.
w1
.
grad
)
w2_grad_sum
=
self
.
check_acc
(
model_a
.
_layers
.
w2
.
grad
,
w2_grad_sum
,
model_b
.
_layers
.
w2
.
grad
)
model_a
.
clear_gradients
()
def
check_acc
(
self
,
grad
,
grad_sum
,
acc_grad
):
if
grad
is
not
None
:
grad_sum
=
grad_sum
+
grad
.
numpy
()
acc_grad
=
acc_grad
.
numpy
()
if
acc_grad
is
not
None
else
None
np
.
testing
.
assert_allclose
(
grad_sum
,
acc_grad
,
rtol
=
1e-6
)
return
grad_sum
def
print_trainer_0
(
self
,
*
args
):
if
self
.
trainer_id
==
0
:
print
(
*
args
)
def
broadcast_param
(
self
,
param
,
root
):
self
.
pg
.
broadcast
(
param
,
root
)
return
param
def
check_gradient
(
self
,
params
):
other_param
=
[]
for
param
in
params
:
if
param
.
trainable
and
(
param
.
grad
is
not
None
):
grad
=
param
.
grad
other_grad
=
self
.
broadcast_param
(
grad
,
root
=
1
)
if
self
.
trainer_id
==
0
:
np
.
testing
.
assert_allclose
(
other_grad
.
numpy
(),
grad
.
numpy
())
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel.py
浏览文件 @
984eacb3
...
...
@@ -205,5 +205,10 @@ class TestDataParallelInEagerMode(TestMultipleGpus):
self
.
run_mnist_2gpu
(
'parallel_dygraph_dataparallel_in_eager_mode.py'
)
class
TestGradientCheckInEagerMode
(
TestMultipleGpus
):
def
test_multiple_gpus_dynamic
(
self
):
self
.
run_mnist_2gpu
(
'parallel_dygraph_gradient_check_in_eager_mode.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录