elementwise_grad_kernel_impl.h 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/complex.h"
18
#include "paddle/phi/core/dense_tensor.h"
19
#include "paddle/phi/kernels/copy_kernel.h"
20
#include "paddle/phi/kernels/funcs/broadcast_function.h"
21
#include "paddle/phi/kernels/funcs/eigen/common.h"
22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
23

24
namespace phi {
25 26 27 28 29 30 31 32 33 34

template <typename T, typename Context, typename GradFunc>
void AddGradImpl(const Context& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out_grad,
                 int axis,
                 DenseTensor* x_grad,
                 DenseTensor* y_grad,
                 GradFunc grad_func) {
35
  phi::funcs::ElementwiseGradPreProcess(out_grad, x_grad);
36 37 38 39 40 41
  auto* out = &out_grad;
  // Special case when y_grad is not needed and x_grad doesn't reduce
  if (x_grad != nullptr && y_grad == nullptr &&
      x_grad->dims() == out_grad.dims()) {
    VLOG(4) << "Special case when y_grad is not needed and x_grad doesn't "
               "reduce";
42
    phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad);
43 44 45 46
  } else if (x_grad == nullptr && y_grad != nullptr &&
             y_grad->dims() == out_grad.dims()) {
    VLOG(4) << "Special case when x_grad is not needed and y_grad doesn't "
               "reduce";
47
    phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, y_grad);
48 49 50 51 52
  } else {
    grad_func(dev_ctx, x, y, *out, out_grad, x_grad, y_grad, axis);
  }
}

53
template <typename T, typename Context>
54 55
void AddDoubleGradImpl(const Context& dev_ctx,
                       const DenseTensor& y,
56 57
                       const paddle::optional<DenseTensor>& ddx,
                       const paddle::optional<DenseTensor>& ddy,
58 59
                       const DenseTensor& dout,
                       int axis,
60
                       DenseTensor* ddout) {
61 62 63 64 65 66 67 68 69 70 71 72
  // ddOut = ddx + ddy
  if (ddout) {
    DenseTensor ddx_safe, ddy_safe;
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, dout, ddx.get_ptr(), &ddx_safe);
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, y, ddy.get_ptr(), &ddy_safe);

    ddout->mutable_data<T>(dev_ctx.GetPlace());
    auto ddx_dims = ddx_safe.dims();
    auto ddy_dims = ddy_safe.dims();
    if (ddx_dims.size() >= ddy_dims.size()) {
73
      funcs::ElementwiseCompute<funcs::AddFunctor<T>, T>(
74 75
          dev_ctx, ddx_safe, ddy_safe, axis, funcs::AddFunctor<T>(), ddout);
    } else {
76 77 78 79 80 81 82
      funcs::ElementwiseCompute<funcs::InverseAddFunctor<T>, T>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          axis,
          funcs::InverseAddFunctor<T>(),
          ddout);
83 84 85 86
    }
  }
}

87
template <typename T, typename Context>
88 89
void SubtractDoubleGradImpl(const Context& dev_ctx,
                            const DenseTensor& y,
90 91
                            const paddle::optional<DenseTensor>& ddx,
                            const paddle::optional<DenseTensor>& ddy,
92 93
                            const DenseTensor& dout,
                            int axis,
94
                            DenseTensor* ddout) {
95 96 97 98 99 100 101 102 103
  // DDOut = ddx - ddy
  if (ddout) {
    DenseTensor ddx_safe, ddy_safe;
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, dout, ddx.get_ptr(), &ddx_safe);
    funcs::GetDoubleGradSafeTensor<Context, T>(
        dev_ctx, y, ddy.get_ptr(), &ddy_safe);

    ddout->mutable_data<T>(dev_ctx.GetPlace());
104
    funcs::ElementwiseCompute<funcs::SubtractFunctor<T>, T>(
105 106 107 108
        dev_ctx, ddx_safe, ddy_safe, axis, funcs::SubtractFunctor<T>(), ddout);
  }
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
******************************
    Divide Grad
******************************
*/

template <typename T>
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
};

template <typename T>
struct DivGradDX<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> y_conj(y.real, -y.imag);
    return dout / y_conj;
  }
};

template <typename T>
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return -dout * out / y;
  }
};

template <typename T>
struct DivGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> out_div_y_conj((out / y).real, -(out / y).imag);
    return -dout * out_div_y_conj;
  }
};

template <typename T>
struct DivDoubleDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return y * out * dout - x * dout;
  }
};

template <typename T, typename Context>
void DivideDoubleGradKernel(const Context& dev_ctx,
                            const DenseTensor& y,
                            const DenseTensor& out,
                            const DenseTensor& dx,
163 164
                            const paddle::optional<DenseTensor>& ddx,
                            const paddle::optional<DenseTensor>& ddy,
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
                            int axis,
                            DenseTensor* dy,
                            DenseTensor* dout,
                            DenseTensor* ddout) {
  if (dy) {
    dy->Resize(y.dims());
    dev_ctx.template Alloc<T>(dy);
  }
  if (dout) {
    dout->Resize(out.dims());
    dev_ctx.template Alloc<T>(dout);
  }
  if (ddout) {
    ddout->Resize(out.dims());
    dev_ctx.template Alloc<T>(ddout);
  }
  // ddX_safe == null ? 0 : ddX
  // ddY_safe == null ? 0 : ddY
  DenseTensor ddX_safe, ddY_safe;
  phi::funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, dx, ddx.get_ptr(), &ddX_safe);
  phi::funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddY_safe);

  // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
  // dY = Out * dX * ddY / Y - dX * ddX / Y
  // dOut = - dX * ddY
  // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
  // inplace ddx
  DenseTensor tmp;
  if (dout) {
    tmp = *dout;
  } else {
    tmp.Resize(out.dims());
    dev_ctx.template Alloc<T>(&tmp);
  }
  if (dy) {
    // dX_div_Y = dX / Y;
    DenseTensor dX_div_Y = tmp;
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::DivideFunctor<T>,
                                      funcs::InverseDivideFunctor<T>>(
        dev_ctx, dx, y, &dX_div_Y, axis);

    // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
    // first output tensor is nullptr, the branch to calculate first
    // output tensor will not be activated, DivGradDx function will not
    // be called and can be ignored, the first branch has little effect
    // on running speed.

    // dY = Out * dX * ddY / Y - dX * ddX / Y
    phi::funcs::ElemwiseGradCompute<Context, T, DivGradDX<T>, DivDoubleDY<T>>(
        dev_ctx,
        ddX_safe,
        ddY_safe,
        out,
        dX_div_Y,
        axis,
        nullptr,
        dy,
        DivGradDX<T>(),
        DivDoubleDY<T>());
  }

  if (ddout) {
    // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, out, ddY_safe, &tmp, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::SubtractFunctor<T>,
                                      funcs::InverseSubtractFunctor<T>>(
        dev_ctx, ddX_safe, tmp, &tmp, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::DivideFunctor<T>,
                                      funcs::InverseDivideFunctor<T>>(
        dev_ctx, tmp, y, ddout, axis);
  }

  if (dout) {
    // dOut = - dX * ddY
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, dx, ddY_safe, dout, axis);
    auto& place = *dev_ctx.eigen_device();
    auto dout_result = phi::EigenVector<T>::Flatten(*dout);
    dout_result.device(place) = static_cast<T>(-1) * dout_result;
  }
}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
template <typename T, typename Context>
void ElementwiseFMaxGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& y,
                               const DenseTensor& out_grad,
                               int axis,
                               DenseTensor* x_grad,
                               DenseTensor* y_grad) {
  funcs::ElementwiseGradPreProcess(out_grad, x_grad);

  auto out = out_grad;  // Fake out, not used
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  if (x.dims() == y.dims()) {
    funcs::ElemwiseGradComputeNoBroadcast<Context,
                                          T,
                                          funcs::FMaxGradDx<T>,
                                          funcs::FMaxGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMaxGradDx<T>(),
        funcs::FMaxGradDy<T>());
  } else {
    funcs::ElemwiseGradComputeWithBroadcast<T,
                                            funcs::FMaxGradDx<T>,
                                            funcs::FMaxGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMaxGradDx<T>(),
        funcs::FMaxGradDy<T>());
  }
}

template <typename T, typename Context>
void ElementwiseFMinGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& y,
                               const DenseTensor& out_grad,
                               int axis,
                               DenseTensor* x_grad,
                               DenseTensor* y_grad) {
  funcs::ElementwiseGradPreProcess(out_grad, x_grad);
  auto out = out_grad;  // Fake out, not used
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  if (x.dims() == y.dims()) {
    funcs::ElemwiseGradComputeNoBroadcast<Context,
                                          T,
                                          funcs::FMinGradDx<T>,
                                          funcs::FMinGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMinGradDx<T>(),
        funcs::FMinGradDy<T>());
  } else {
    funcs::ElemwiseGradComputeWithBroadcast<T,
                                            funcs::FMinGradDx<T>,
                                            funcs::FMinGradDy<T>>(
        dev_ctx,
        x_dim,
        y_dim,
        x,
        y,
        out,
        out_grad,
        axis,
        x_grad,
        y_grad,
        funcs::FMinGradDx<T>(),
        funcs::FMinGradDy<T>());
  }
}
357

Y
YuanRisheng 已提交
358 359 360 361 362
template <typename T>
struct MulGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
};

363 364 365 366 367 368 369 370
// avoid [-Wint-in-bool-context] warning
template <>
struct MulGradDX<bool> {
  HOSTDEVICE bool operator()(bool x, bool y, bool out, bool dout) const {
    return dout && y;
  }
};

Y
YuanRisheng 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
template <typename T>
struct MulGradDX<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> y_conj(y.real, -y.imag);
    return dout * y_conj;
  }
};

/*
******************************
    Multiply Grad
******************************
*/

template <typename T>
struct MulGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
};

394 395 396 397 398 399 400 401
// avoid [-Wint-in-bool-context] warning
template <>
struct MulGradDY<bool> {
  HOSTDEVICE bool operator()(bool x, bool y, bool out, bool dout) const {
    return dout && x;
  }
};

Y
YuanRisheng 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
template <typename T>
struct MulGradDY<phi::dtype::complex<T>> {
  HOSTDEVICE phi::dtype::complex<T> operator()(
      phi::dtype::complex<T> x,
      phi::dtype::complex<T> y,
      phi::dtype::complex<T> out,
      phi::dtype::complex<T> dout) const {
    phi::dtype::complex<T> x_conj(x.real, -x.imag);
    return dout * x_conj;
  }
};

template <typename T, typename Context>
void MultiplyDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
419 420
                              const paddle::optional<DenseTensor>& ddx,
                              const paddle::optional<DenseTensor>& ddy,
Y
YuanRisheng 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                              int axis,
                              DenseTensor* dx,
                              DenseTensor* dy,
                              DenseTensor* ddout) {
  if (ddout) dev_ctx.template Alloc<T>(ddout);

  DenseTensor ddx_safe, ddy_safe;
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, x, ddx.get_ptr(), &ddx_safe);
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddy_safe);

  // dx = dout * ddy
  // dy = dout * ddx
  // ddout = ddx * y + x * ddy
  // change computation sequence to save memory, so ddout can inplace ddx and
  // dx can be used as 'tmp' tensor
  // (1) dx = x * ddy
  // (2) dy = dout * ddx
  // (3) ddout = ddx * y
  // (4) ddout = ddout + dx
  // (5) dx = dout * ddy
  if (ddout) {
    auto& place = *dev_ctx.eigen_device();
    // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
    if (ddout->numel() > ddx.get_ptr()->numel()) {
      phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          dout,
          dout,
          axis,
          dx,
          dy,
          MulGradDX<T>(),
          MulGradDY<T>());

      DenseTensor ddout_tmp;
      ddout_tmp.Resize(ddout->dims());
      dev_ctx.template Alloc<T>(&ddout_tmp);

      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, y, ddx_safe, ddout, axis);
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, x, &ddout_tmp, axis);

      auto ddout_t = phi::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = phi::EigenVector<T>::Flatten(ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
    } else {
      // use dx to save memory, other than alloc tmp tensor
      DenseTensor* ddout_tmp = dx;
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, x, ddy_safe, ddout_tmp, axis);
      // NOTE: in the following ElemwiseGradCompute, for the
      // first output tensor is nullptr, the branch to calculate first
      // output tensor will not be activated, DivGradDx function will not
      // be called and can be ignored, the first branch has little effect
      // on running speed.
      phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          dout,
          dout,
          axis,
          nullptr,
          dy,
          MulGradDX<T>(),
          MulGradDY<T>());
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddx_safe, y, ddout, axis);

      auto ddout_t = phi::EigenVector<T>::Flatten(*ddout);
      auto ddout_tmp_t = phi::EigenVector<T>::Flatten(*ddout_tmp);
      ddout_t.device(place) = ddout_t + ddout_tmp_t;
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, dout, ddy_safe, dx, axis);
    }
516 517 518 519 520 521 522 523 524 525 526 527 528 529
  } else {
    if (dx && dy) {
      phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
          dev_ctx,
          ddx_safe,
          ddy_safe,
          dout,
          dout,
          axis,
          dx,
          dy,
          MulGradDX<T>(),
          MulGradDY<T>());
    }
Y
YuanRisheng 已提交
530 531 532 533 534 535 536 537
  }
}

template <typename T, typename Context>
void MultiplyTripleGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
538 539
                              const paddle::optional<DenseTensor>& ddx,
                              const paddle::optional<DenseTensor>& ddy,
Y
YuanRisheng 已提交
540 541
                              const DenseTensor& d_dx,
                              const DenseTensor& d_dy,
542
                              const paddle::optional<DenseTensor>& d_ddout,
Y
YuanRisheng 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                              int axis,
                              DenseTensor* d_x,
                              DenseTensor* d_y,
                              DenseTensor* d_dout,
                              DenseTensor* d_ddx,
                              DenseTensor* d_ddy) {
  if (d_x) {
    d_x->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_x);
  }
  if (d_y) {
    d_y->Resize(y.dims());
    dev_ctx.template Alloc<T>(d_y);
  }
  if (d_dout) {
    d_dout->Resize(dout.dims());
    dev_ctx.template Alloc<T>(d_dout);
  }
  if (d_ddx) {
    d_ddx->Resize(x.dims());
    dev_ctx.template Alloc<T>(d_ddx);
  }
  if (d_ddy) {
    d_ddy->Resize(y.dims());
    dev_ctx.template Alloc<T>(d_ddy);
  }

  auto& place = *dev_ctx.eigen_device();

  DenseTensor ddx_safe, ddy_safe;
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, x, ddx.get_ptr(), &ddx_safe);
  funcs::GetDoubleGradSafeTensor<Context, T>(
      dev_ctx, y, ddy.get_ptr(), &ddy_safe);

  if (d_ddout.get_ptr()) {
    if (d_x) {
      // d_x = ddy * d_ddout
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddy_safe, *(d_ddout.get_ptr()), d_x, axis);
    }
    if (d_y) {
      // d_y = ddx * d_ddout
      funcs::DefaultElementwiseOperator<Context,
                                        T,
                                        funcs::MultiplyFunctor<T>,
                                        funcs::InverseMultiplyFunctor<T>>(
          dev_ctx, ddx_safe, *(d_ddout.get_ptr()), d_y, axis);
    }
  }

  if (d_dout) {
    // get d_dout
    // d_dout = ddy * d_dx + d_dy * ddx
    DenseTensor d_dout_tmp;
    d_dout_tmp.Resize(dout.dims());
    dev_ctx.template Alloc<T>(&d_dout_tmp);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, d_dy, ddx_safe, d_dout, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, ddy_safe, d_dx, &d_dout_tmp, axis);
    auto d_dout_t = phi::EigenVector<T>::Flatten(*d_dout);
    auto d_dout_tmp_t = phi::EigenVector<T>::Flatten(d_dout_tmp);
    d_dout_t.device(place) = d_dout_t + d_dout_tmp_t;
  }

  if (d_ddx) {
    // get d_ddx
    // d_ddx = dout * d_dy + y * d_ddout
    DenseTensor d_ddx_tmp;
    d_ddx_tmp.Resize(ddx->dims());
    dev_ctx.template Alloc<T>(&d_ddx_tmp);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, dout, d_dy, d_ddx, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, y, *(d_ddout.get_ptr()), &d_ddx_tmp, axis);
    auto d_ddx_t = phi::EigenVector<T>::Flatten(*d_ddx);
    auto d_ddx_tmp_t = phi::EigenVector<T>::Flatten(d_ddx_tmp);
    d_ddx_t.device(place) = d_ddx_t + d_ddx_tmp_t;
  }

  if (d_ddy) {
    // get d_ddy
    // d_ddy = dout * d_dx + x * d_ddout
    DenseTensor d_ddy_tmp;
    d_ddy_tmp.Resize(ddy->dims());
    dev_ctx.template Alloc<T>(&d_ddy_tmp);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, dout, d_dx, d_ddy, axis);
    funcs::DefaultElementwiseOperator<Context,
                                      T,
                                      funcs::MultiplyFunctor<T>,
                                      funcs::InverseMultiplyFunctor<T>>(
        dev_ctx, x, *(d_ddout.get_ptr()), &d_ddy_tmp, axis);
    auto d_ddy_t = phi::EigenVector<T>::Flatten(*d_ddy);
    auto d_ddy_tmp_t = phi::EigenVector<T>::Flatten(d_ddy_tmp);
    d_ddy_t.device(place) = d_ddy_t + d_ddy_tmp_t;
  }
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/*
******************************
    Maximum Grad
******************************
*/

template <typename T>
struct MaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x > y);
  }
};

template <typename T>
struct MaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x <= y);
  }
};

/*
******************************
    Minimum Grad
******************************
*/
template <typename T>
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x < y);
  }
};

template <typename T>
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x >= y);
  }
};
699

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
template <typename T>
struct HeavisideGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(0);
  }
};

template <typename T>
struct HeavisideGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(x == static_cast<T>(0));
  }
};

template <typename T, typename Context>
void ElementwiseHeavisideGradKernel(const Context& dev_ctx,
                                    const DenseTensor& x,
                                    const DenseTensor& y,
                                    const DenseTensor& dout,
                                    int axis,
                                    DenseTensor* dx,
                                    DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::
      ElemwiseGradCompute<Context, T, HeavisideGradDx<T>, HeavisideGradDy<T>>(
          dev_ctx,
          x,
          y,
          dout,
          dout,
          axis,
          dx,
          dy,
          HeavisideGradDx<T>(),
          HeavisideGradDy<T>());
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
template <typename T>
struct PowGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * y *
             std::pow(static_cast<double>(x), static_cast<double>(y - 1));
    }
#endif
    return dout * y * std::pow(x, y - 1);
  }
};

template <typename T, typename Enable = void>
struct PowGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * std::log(static_cast<double>(x)) *
             std::pow(static_cast<double>(x), static_cast<double>(y));
    }
#endif
    return dout * std::log(x) * std::pow(x, y);
  }
};

template <typename T, typename Context>
void ElementwisePowGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* dx,
                              DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, PowGradDX<T>, PowGradDY<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, PowGradDX<T>(), PowGradDY<T>());
}

776
}  // namespace phi