Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
cfadf61b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cfadf61b
编写于
3月 25, 2022
作者:
F
FlyingQianMM
提交者:
GitHub
3月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move elementwise_max/min/mod into phi (#40590)
上级
3228fc34
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
610 addition
and
627 deletion
+610
-627
paddle/fluid/framework/new_executor/standalone_executor_test.cc
.../fluid/framework/new_executor/standalone_executor_test.cc
+1
-1
paddle/fluid/operators/elementwise/elementwise_functor.h
paddle/fluid/operators/elementwise/elementwise_functor.h
+9
-55
paddle/fluid/operators/elementwise/elementwise_max_op.cc
paddle/fluid/operators/elementwise/elementwise_max_op.cc
+0
-19
paddle/fluid/operators/elementwise/elementwise_max_op.cu
paddle/fluid/operators/elementwise/elementwise_max_op.cu
+0
-88
paddle/fluid/operators/elementwise/elementwise_max_op.h
paddle/fluid/operators/elementwise/elementwise_max_op.h
+0
-93
paddle/fluid/operators/elementwise/elementwise_max_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_max_op_npu.cc
+0
-1
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
+0
-1
paddle/fluid/operators/elementwise/elementwise_min_op.cc
paddle/fluid/operators/elementwise/elementwise_min_op.cc
+0
-15
paddle/fluid/operators/elementwise/elementwise_min_op.cu
paddle/fluid/operators/elementwise/elementwise_min_op.cu
+0
-84
paddle/fluid/operators/elementwise/elementwise_min_op.h
paddle/fluid/operators/elementwise/elementwise_min_op.h
+0
-113
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
+0
-1
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
+0
-1
paddle/fluid/operators/elementwise/elementwise_mod_op.cc
paddle/fluid/operators/elementwise/elementwise_mod_op.cc
+0
-9
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
+0
-46
paddle/fluid/operators/elementwise/elementwise_mod_op.h
paddle/fluid/operators/elementwise/elementwise_mod_op.h
+0
-98
paddle/fluid/operators/elementwise/elementwise_mod_op_npu.cc
paddle/fluid/operators/elementwise/elementwise_mod_op_npu.cc
+0
-1
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
+47
-0
paddle/phi/kernels/cpu/elementwise_kernel.cc
paddle/phi/kernels/cpu/elementwise_kernel.cc
+69
-0
paddle/phi/kernels/elementwise_grad_kernel.h
paddle/phi/kernels/elementwise_grad_kernel.h
+17
-0
paddle/phi/kernels/elementwise_kernel.cc
paddle/phi/kernels/elementwise_kernel.cc
+68
-0
paddle/phi/kernels/elementwise_kernel.h
paddle/phi/kernels/elementwise_kernel.h
+71
-0
paddle/phi/kernels/funcs/elementwise_functor.h
paddle/phi/kernels/funcs/elementwise_functor.h
+116
-0
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
+83
-0
paddle/phi/kernels/gpu/elementwise_kernel.cu
paddle/phi/kernels/gpu/elementwise_kernel.cu
+34
-0
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
+38
-0
paddle/phi/ops/compat/elementwise_sig.cc
paddle/phi/ops/compat/elementwise_sig.cc
+57
-1
未找到文件。
paddle/fluid/framework/new_executor/standalone_executor_test.cc
浏览文件 @
cfadf61b
...
...
@@ -54,7 +54,7 @@ USE_OP(sum);
USE_OP_ITSELF
(
slice_grad
);
USE_OP_ITSELF
(
lookup_table_grad
);
USE_OP
(
sqrt
);
USE_OP
(
elementwise_max
);
USE_OP
_ITSELF
(
elementwise_max
);
USE_OP_ITSELF
(
elementwise_div
);
USE_OP_ITSELF
(
sgd
);
USE_OP
(
squared_l2_norm
);
...
...
paddle/fluid/operators/elementwise/elementwise_functor.h
浏览文件 @
cfadf61b
...
...
@@ -70,75 +70,29 @@ struct InverseFloorDivFunctor {
// Maximum
template
<
typename
T
>
struct
MaxFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
?
a
:
b
;
}
};
using
MaxFunctor
=
phi
::
funcs
::
MaximumFunctor
<
T
>
;
// Minmum
template
<
typename
T
>
struct
MinFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
?
a
:
b
;
}
};
using
MinFunctor
=
phi
::
funcs
::
MinimumFunctor
<
T
>
;
template
<
typename
T
>
using
Complex
=
paddle
::
platform
::
complex
<
T
>
;
// Ternary compare
template
<
typename
T
>
struct
MinGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<
y
);
}
};
using
MaxGradXFunctor
=
phi
::
funcs
::
MaxGradXFunctor
<
T
>
;
template
<
typename
T
>
struct
MinGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>=
y
);
}
};
using
MaxGradYFunctor
=
phi
::
funcs
::
MaxGradYFunctor
<
T
>
;
template
<
typename
InT
,
typename
OutT
>
struct
MinGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
x
,
const
InT
y
,
const
InT
dout
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * (x < y)
outs
[
0
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
<
y
));
// dy = dout * (x >= y)
outs
[
1
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
>=
y
));
return
outs
;
}
};
using
MaxGradXYFunctor
=
phi
::
funcs
::
MaxGradXYFunctor
<
InT
,
OutT
>
;
// Ternary compare
template
<
typename
T
>
struct
MaxGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>
y
);
}
};
using
MinGradXFunctor
=
phi
::
funcs
::
MinGradXFunctor
<
T
>
;
template
<
typename
T
>
struct
MaxGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<=
y
);
}
};
using
MinGradYFunctor
=
phi
::
funcs
::
MinGradYFunctor
<
T
>
;
template
<
typename
InT
,
typename
OutT
>
struct
MaxGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
x
,
const
InT
y
,
const
InT
dout
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * (x > y)
outs
[
0
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
>
y
));
// dy = dout * (x <= y)
outs
[
1
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
<=
y
));
return
outs
;
}
};
using
MinGradXYFunctor
=
phi
::
funcs
::
MinGradXYFunctor
<
InT
,
OutT
>
;
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_max_op.cc
浏览文件 @
cfadf61b
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
...
...
@@ -119,23 +117,6 @@ REGISTER_OPERATOR(elementwise_max, ops::ElementwiseOp,
REGISTER_OPERATOR
(
elementwise_max_grad
,
ops
::
ElementwiseOpGrad
);
REGISTER_OP_CPU_KERNEL
(
elementwise_max
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
bfloat16
>
);
REGISTER_OP_CPU_KERNEL
(
elementwise_max_grad
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
bfloat16
>
);
REGISTER_OP_VERSION
(
elementwise_max
)
.
AddCheckpoint
(
R"ROC(Register elementwise_max for adding the attribute of Scale_y)ROC"
,
...
...
paddle/fluid/operators/elementwise/elementwise_max_op.cu
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ElementwiseMaxKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
paddle
::
operators
::
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
axis
,
MaxFunctor
<
T
>
());
}
};
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMaxGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
auto
place
=
ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
MaxGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
MaxGradXFunctor
<
T
>
());
}
else
if
(
dx
==
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
MaxGradYFunctor
<
T
>
());
}
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
elementwise_max
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
bfloat16
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMaxKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
elementwise_max_grad
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
bfloat16
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMaxGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/elementwise/elementwise_max_op.h
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMaxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MaxFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MaxFunctor
<
T
>
(),
z
);
}
};
template
<
typename
T
>
struct
MaxGradDx
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>
y
);
}
};
template
<
typename
T
>
struct
MaxGradDy
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<=
y
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
>::
type
ElementwiseMaxGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElemwiseGradCompute
<
DeviceContext
,
T
,
MaxGradDx
<
T
>
,
MaxGradDy
<
T
>>
(
ctx
,
*
x
,
*
y
,
*
out
,
*
dout
,
axis
,
dx
,
dy
,
MaxGradDx
<
T
>
(),
MaxGradDy
<
T
>
());
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMaxGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
);
#endif
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMaxGradKernel
:
public
ElemwiseGradKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out
=
dout
;
// out is not necessary
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
ElementwiseMaxGrad
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
out
,
dout
,
dx
,
dy
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_max_op_npu.cc
浏览文件 @
cfadf61b
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
...
...
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
浏览文件 @
cfadf61b
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace
paddle
{
...
...
paddle/fluid/operators/elementwise/elementwise_min_op.cc
浏览文件 @
cfadf61b
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
...
...
@@ -119,19 +117,6 @@ REGISTER_OPERATOR(elementwise_min, ops::ElementwiseOp,
REGISTER_OPERATOR
(
elementwise_min_grad
,
ops
::
ElementwiseOpGrad
);
REGISTER_OP_CPU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_VERSION
(
elementwise_min
)
.
AddCheckpoint
(
R"ROC(Register elementwise_min for adding the attribute of Scale_y)ROC"
,
...
...
paddle/fluid/operators/elementwise/elementwise_min_op.cu
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ElementwiseMinKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
paddle
::
operators
::
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
axis
,
MinFunctor
<
T
>
());
}
};
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMinGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
const
auto
place
=
ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
MinGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
MinGradXFunctor
<
T
>
());
}
else
if
(
dx
==
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
,
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
MinGradYFunctor
<
T
>
());
}
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMinKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseMinGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/elementwise/elementwise_min_op.h
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MinFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MinFunctor
<
T
>
(),
z
);
}
};
template
<
typename
T
>
struct
MinGradDx
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
(
x
<
y
);
}
};
template
<
typename
T
>
struct
MinGradDy
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
(
x
>=
y
);
}
};
#ifdef PADDLE_CUDA_FP16
template
<
>
struct
MinGradDx
<
platform
::
float16
>
{
HOSTDEVICE
platform
::
float16
operator
()(
platform
::
float16
x
,
platform
::
float16
y
,
platform
::
float16
out
,
platform
::
float16
dout
)
const
{
return
x
<
y
?
dout
:
static_cast
<
platform
::
float16
>
(
0
);
}
};
template
<
>
struct
MinGradDy
<
platform
::
float16
>
{
HOSTDEVICE
platform
::
float16
operator
()(
platform
::
float16
x
,
platform
::
float16
y
,
platform
::
float16
out
,
platform
::
float16
dout
)
const
{
return
x
>=
y
?
dout
:
static_cast
<
platform
::
float16
>
(
0
);
}
};
#endif
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
>::
type
ElementwiseMinGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElemwiseGradCompute
<
DeviceContext
,
T
,
MinGradDx
<
T
>
,
MinGradDy
<
T
>>
(
ctx
,
*
x
,
*
y
,
*
out
,
*
dout
,
axis
,
dx
,
dy
,
MinGradDx
<
T
>
(),
MinGradDy
<
T
>
());
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_same
<
DeviceContext
,
platform
::
CUDADeviceContext
>::
value
>::
type
ElementwiseMinGrad
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
framework
::
Tensor
*
dy
);
#endif
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinGradKernel
:
public
ElemwiseGradKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
out
=
dout
;
// Fake out, not used
ElementwiseMinGrad
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
out
,
dout
,
dx
,
dy
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_min_op_npu.cc
浏览文件 @
cfadf61b
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
...
...
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
浏览文件 @
cfadf61b
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace
paddle
{
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.cc
浏览文件 @
cfadf61b
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
...
...
@@ -62,13 +60,6 @@ namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT
(
elementwise_mod
,
ops
::
ElementwiseOp
,
ops
::
ElementwiseModOpMaker
);
REGISTER_OP_CPU_KERNEL
(
elementwise_mod
,
ops
::
ElementwiseModKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ElementwiseModKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ElementwiseModKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ElementwiseModKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_VERSION
(
elementwise_mod
)
.
AddCheckpoint
(
R"ROC(Register elementwise_mod for adding the attribute of Scale_y)ROC"
,
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ElementwiseModKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
paddle
::
operators
::
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
ModFunctor
<
T
>
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
elementwise_mod
,
ops
::
ElementwiseModKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseModKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ElementwiseModKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseModKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/elementwise/elementwise_mod_op.h
已删除
100644 → 0
浏览文件 @
3228fc34
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
ModFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
a
%
b
;
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
b
^
res
)
<
0
))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
ModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
a
,
b
);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
InverseModFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
return
res
;
}
};
template
<
typename
T
>
struct
InverseModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
b
,
a
);
if
((
res
!=
0
)
&&
((
a
<
0
)
!=
(
res
<
0
)))
res
+=
a
;
return
res
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
elementwise_mod
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
ElementwiseComputeEx
<
ModFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
ModFunctor
<
T
>
(),
z
);
}
else
{
ElementwiseComputeEx
<
InverseModFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
InverseModFunctor
<
T
>
(),
z
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseModKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// dtype of x and y is int64 or int32
elementwise_mod
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_mod_op_npu.cc
浏览文件 @
cfadf61b
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
...
...
paddle/phi/kernels/cpu/elementwise_grad_kernel.cc
浏览文件 @
cfadf61b
...
...
@@ -135,6 +135,32 @@ void MultiplyGradKernel(const Context& dev_ctx,
dev_ctx
,
x
,
y
,
*
out
,
dout
,
axis
,
dx
,
dy
,
MulGradDX
<
T
>
(),
MulGradDY
<
T
>
());
}
template
<
typename
T
,
typename
Context
>
void
MaximumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
funcs
::
ElementwiseGradPreProcess
(
dout
,
dx
);
phi
::
funcs
::
ElemwiseGradCompute
<
Context
,
T
,
MaxGradDx
<
T
>
,
MaxGradDy
<
T
>>
(
dev_ctx
,
x
,
y
,
dout
,
dout
,
axis
,
dx
,
dy
,
MaxGradDx
<
T
>
(),
MaxGradDy
<
T
>
());
}
template
<
typename
T
,
typename
Context
>
void
MinimumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
funcs
::
ElementwiseGradPreProcess
(
dout
,
dx
);
phi
::
funcs
::
ElemwiseGradCompute
<
Context
,
T
,
MinGradDx
<
T
>
,
MinGradDy
<
T
>>
(
dev_ctx
,
x
,
y
,
dout
,
dout
,
axis
,
dx
,
dy
,
MinGradDx
<
T
>
(),
MinGradDy
<
T
>
());
}
}
// namespace phi
PD_REGISTER_KERNEL
(
add_grad
,
...
...
@@ -259,6 +285,7 @@ PD_REGISTER_KERNEL(multiply_triple_grad,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
fmax_grad
,
CPU
,
ALL_LAYOUT
,
...
...
@@ -276,3 +303,23 @@ PD_REGISTER_KERNEL(fmin_grad,
double
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
maximum_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MaximumGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
MinimumGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/cpu/elementwise_kernel.cc
浏览文件 @
cfadf61b
...
...
@@ -70,6 +70,49 @@ void DivideRawKernel(const Context& dev_ctx,
}
}
template
<
typename
T
,
typename
Context
>
void
MaximumRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
// allocate memory for out
dev_ctx
.
template
Alloc
<
T
>(
out
);
funcs
::
ElementwiseCompute
<
funcs
::
MaximumFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
funcs
::
MaximumFunctor
<
T
>
(),
out
);
}
template
<
typename
T
,
typename
Context
>
void
MinimumRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
// allocate memory for out
dev_ctx
.
template
Alloc
<
T
>(
out
);
funcs
::
ElementwiseCompute
<
funcs
::
MinimumFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
funcs
::
MinimumFunctor
<
T
>
(),
out
);
}
template
<
typename
T
,
typename
Context
>
void
ModuloRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
// allocate memory for out
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
funcs
::
ElementwiseCompute
<
funcs
::
ModuloFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
funcs
::
ModuloFunctor
<
T
>
(),
out
);
}
else
{
funcs
::
ElementwiseCompute
<
funcs
::
InverseModuloFunctor
<
T
>
,
T
>
(
dev_ctx
,
x
,
y
,
axis
,
funcs
::
InverseModuloFunctor
<
T
>
(),
out
);
}
}
// Create the definition of Add
DEFINE_CPU_ELEMENTWISE_OP
(
Add
)
...
...
@@ -138,3 +181,29 @@ PD_REGISTER_KERNEL(multiply_raw,
complex64
,
complex128
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
maximum_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
MaximumRawKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
MinimumRawKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
modulo_raw
,
CPU
,
ALL_LAYOUT
,
phi
::
ModuloRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/elementwise_grad_kernel.h
浏览文件 @
cfadf61b
...
...
@@ -142,4 +142,21 @@ void ElementwiseFMinGradKernel(const Context& dev_ctx,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
);
template
<
typename
T
,
typename
Context
>
void
MaximumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
);
template
<
typename
T
,
typename
Context
>
void
MinimumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
);
}
// namespace phi
paddle/phi/kernels/elementwise_kernel.cc
浏览文件 @
cfadf61b
...
...
@@ -55,6 +55,32 @@ void MultiplyKernel(const Context& dev_ctx,
MultiplyRawKernel
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
MaximumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
int
axis
=
-
1
;
MaximumRawKernel
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
MinimumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
int
axis
=
-
1
;
MinimumRawKernel
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
ModuloKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
int
axis
=
-
1
;
ModuloRawKernel
<
T
>
(
dev_ctx
,
x
,
y
,
axis
,
out
);
}
}
// namespace phi
using
complex64
=
::
phi
::
dtype
::
complex
<
float
>
;
...
...
@@ -105,6 +131,26 @@ PD_REGISTER_KERNEL(multiply,
complex64
,
complex128
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
maximum
,
CPU
,
ALL_LAYOUT
,
phi
::
MaximumKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum
,
CPU
,
ALL_LAYOUT
,
phi
::
MinimumKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
modulo
,
CPU
,
ALL_LAYOUT
,
phi
::
ModuloKernel
,
float
,
double
,
int
,
int64_t
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
...
...
@@ -158,4 +204,26 @@ PD_REGISTER_KERNEL(multiply,
phi
::
dtype
::
float16
,
complex64
,
complex128
)
{}
PD_REGISTER_KERNEL
(
maximum
,
GPU
,
ALL_LAYOUT
,
phi
::
MaximumKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum
,
GPU
,
ALL_LAYOUT
,
phi
::
MinimumKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
modulo
,
GPU
,
ALL_LAYOUT
,
phi
::
ModuloKernel
,
float
,
double
,
int
,
int64_t
)
{}
#endif
paddle/phi/kernels/elementwise_kernel.h
浏览文件 @
cfadf61b
...
...
@@ -85,6 +85,45 @@ void MultiplyKernel(const Context& dev_ctx,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
MaximumRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
MaximumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
MinimumRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
MinimumKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
ModuloRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
ModuloKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
DenseTensor
Add
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
...
...
@@ -129,4 +168,36 @@ DenseTensor Multiply(const Context& dev_ctx,
return
dense_out
;
}
template
<
typename
T
,
typename
Context
>
DenseTensor
Maximum
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
DenseTensor
dense_out
;
MetaTensor
meta_out
(
&
dense_out
);
ElementwiseInferMeta
(
x
,
y
,
&
meta_out
);
MaximumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
}
template
<
typename
T
,
typename
Context
>
DenseTensor
Minimum
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
DenseTensor
dense_out
;
MetaTensor
meta_out
(
&
dense_out
);
ElementwiseInferMeta
(
x
,
y
,
&
meta_out
);
MinimumKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
}
template
<
typename
T
,
typename
Context
>
DenseTensor
Modulo
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
)
{
DenseTensor
dense_out
;
MetaTensor
meta_out
(
&
dense_out
);
ElementwiseInferMeta
(
x
,
y
,
&
meta_out
);
ModuloKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
&
dense_out
);
return
dense_out
;
}
}
// namespace phi
paddle/phi/kernels/funcs/elementwise_functor.h
浏览文件 @
cfadf61b
...
...
@@ -422,5 +422,121 @@ struct MultiplyGradXYFunctor<ComplexType<InT>, ComplexType<OutT>> {
}
};
// Maximum
template
<
typename
T
>
struct
MaximumFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
?
a
:
b
;
}
};
template
<
typename
T
>
struct
MaxGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>
y
);
}
};
template
<
typename
T
>
struct
MaxGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<=
y
);
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MaxGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
x
,
const
InT
y
,
const
InT
dout
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * (x > y)
outs
[
0
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
>
y
));
// dy = dout * (x <= y)
outs
[
1
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
<=
y
));
return
outs
;
}
};
// Minimum
template
<
typename
T
>
struct
MinimumFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
?
a
:
b
;
}
};
template
<
typename
T
>
struct
MinGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<
y
);
}
};
template
<
typename
T
>
struct
MinGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
x
,
const
T
y
,
const
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>=
y
);
}
};
template
<
typename
InT
,
typename
OutT
>
struct
MinGradXYFunctor
{
inline
HOSTDEVICE
phi
::
Array
<
OutT
,
2
>
operator
()(
const
InT
x
,
const
InT
y
,
const
InT
dout
)
{
phi
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * (x < y)
outs
[
0
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
<
y
));
// dy = dout * (x >= y)
outs
[
1
]
=
static_cast
<
OutT
>
(
dout
*
static_cast
<
InT
>
(
x
>=
y
));
return
outs
;
}
};
// Modulo
template
<
typename
T
,
typename
Enable
=
void
>
struct
ModuloFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
a
%
b
;
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
b
^
res
)
<
0
))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
ModuloFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
a
,
b
);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
,
typename
Enable
=
void
>
struct
InverseModuloFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
return
res
;
}
};
template
<
typename
T
>
struct
InverseModuloFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
b
,
a
);
if
((
res
!=
0
)
&&
((
a
<
0
)
!=
(
res
<
0
)))
res
+=
a
;
return
res
;
}
};
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/gpu/elementwise_grad_kernel.cu
浏览文件 @
cfadf61b
...
...
@@ -148,6 +148,67 @@ void MultiplyGradKernel(const Context& dev_ctx,
ElementwiseMulGrad
<
T
>
(
dev_ctx
,
x
,
y
,
dout
,
dx
,
dy
,
axis
);
}
template
<
typename
T
,
typename
Context
>
void
MaximumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
const
auto
place
=
dev_ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
funcs
::
MaxGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
funcs
::
MaxGradXFunctor
<
T
>
());
}
else
if
(
dy
!=
nullptr
&&
dx
==
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
funcs
::
MaxGradYFunctor
<
T
>
());
}
}
template
<
typename
T
,
typename
Context
>
void
MinimumGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
int
axis
,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
const
auto
place
=
dev_ctx
.
GetPlace
();
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXAndYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
dy
,
funcs
::
MinGradXYFunctor
<
T
,
T
>
());
}
else
if
(
dx
!=
nullptr
&&
dy
==
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kBinary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dx
,
funcs
::
MinGradXFunctor
<
T
>
());
}
else
if
(
dy
!=
nullptr
&&
dx
==
nullptr
)
{
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
,
&
y
,
&
dout
};
GetGradXOrYOut
<
ElementwiseType
::
kTernary
,
T
>
(
dev_ctx
,
place
,
axis
,
ins
,
dout
,
dy
,
funcs
::
MinGradYFunctor
<
T
>
());
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
add_grad
,
...
...
@@ -299,3 +360,25 @@ PD_REGISTER_KERNEL(fmin_grad,
double
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
maximum_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MaximumGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
MinimumGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/gpu/elementwise_kernel.cu
浏览文件 @
cfadf61b
...
...
@@ -49,6 +49,12 @@ DEFINE_CUDA_ELEMENTWISE_OP(Subtract)
DEFINE_CUDA_ELEMENTWISE_OP
(
Multiply
)
// Create the definition of Divide
DEFINE_CUDA_ELEMENTWISE_OP
(
Divide
)
// Create the definition of Maximum
DEFINE_CUDA_ELEMENTWISE_OP
(
Maximum
)
// Create the definition of Minimum
DEFINE_CUDA_ELEMENTWISE_OP
(
Minimum
)
// Create the definition of Modulo
DEFINE_CUDA_ELEMENTWISE_OP
(
Modulo
)
}
// namespace phi
...
...
@@ -114,3 +120,31 @@ PD_REGISTER_KERNEL(multiply_raw,
complex64
,
complex128
,
bfloat16
)
{}
PD_REGISTER_KERNEL
(
maximum_raw
,
GPU
,
ALL_LAYOUT
,
phi
::
MaximumRawKernel
,
float
,
double
,
int
,
int64_t
,
float16
,
bfloat16
)
{}
PD_REGISTER_KERNEL
(
minimum_raw
,
GPU
,
ALL_LAYOUT
,
phi
::
MinimumRawKernel
,
float
,
double
,
int
,
int64_t
,
float16
,
bfloat16
)
{}
PD_REGISTER_KERNEL
(
modulo_raw
,
GPU
,
ALL_LAYOUT
,
phi
::
ModuloRawKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h
浏览文件 @
cfadf61b
...
...
@@ -628,4 +628,42 @@ void MultiplyTripleGradKernel(const Context& dev_ctx,
}
}
/*
******************************
Maximum Grad
******************************
*/
template
<
typename
T
>
struct
MaxGradDx
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>
y
);
}
};
template
<
typename
T
>
struct
MaxGradDy
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<=
y
);
}
};
/*
******************************
Minimum Grad
******************************
*/
template
<
typename
T
>
struct
MinGradDx
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
<
y
);
}
};
template
<
typename
T
>
struct
MinGradDy
{
HOSTDEVICE
T
operator
()(
T
x
,
T
y
,
T
out
,
T
dout
)
const
{
return
dout
*
static_cast
<
T
>
(
x
>=
y
);
}
};
}
// namespace phi
paddle/phi/ops/compat/elementwise_sig.cc
浏览文件 @
cfadf61b
...
...
@@ -55,6 +55,33 @@ KernelSignature ElementwiseDivOpArgumentMapping(
return
KernelSignature
(
"divide_raw"
,
{
"X"
,
"Y"
},
{
"axis"
},
{
"Out"
});
}
KernelSignature
ElementwiseMaxOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
int
axis
=
paddle
::
any_cast
<
int
>
(
ctx
.
Attr
(
"axis"
));
if
(
axis
==
-
1
)
{
return
KernelSignature
(
"maximum"
,
{
"X"
,
"Y"
},
{},
{
"Out"
});
}
return
KernelSignature
(
"maximum_raw"
,
{
"X"
,
"Y"
},
{
"axis"
},
{
"Out"
});
}
KernelSignature
ElementwiseMinOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
int
axis
=
paddle
::
any_cast
<
int
>
(
ctx
.
Attr
(
"axis"
));
if
(
axis
==
-
1
)
{
return
KernelSignature
(
"minimum"
,
{
"X"
,
"Y"
},
{},
{
"Out"
});
}
return
KernelSignature
(
"minimum_raw"
,
{
"X"
,
"Y"
},
{
"axis"
},
{
"Out"
});
}
KernelSignature
ElementwiseModOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
int
axis
=
paddle
::
any_cast
<
int
>
(
ctx
.
Attr
(
"axis"
));
if
(
axis
==
-
1
)
{
return
KernelSignature
(
"modulo"
,
{
"X"
,
"Y"
},
{},
{
"Out"
});
}
return
KernelSignature
(
"modulo_raw"
,
{
"X"
,
"Y"
},
{
"axis"
},
{
"Out"
});
}
KernelSignature
ElementwiseAddGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"add_grad"
,
...
...
@@ -158,12 +185,30 @@ KernelSignature ElementwiseMulTripleGradOpArgumentMapping(
{
"D_X"
,
"D_Y"
,
"D_DOut"
,
"D_DDX"
,
"D_DDY"
});
}
KernelSignature
ElementwiseMaxGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"maximum_grad"
,
{
"X"
,
"Y"
,
GradVarName
(
"Out"
)},
{
"axis"
},
{
GradVarName
(
"X"
),
GradVarName
(
"Y"
)});
}
KernelSignature
ElementwiseMinGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"minimum_grad"
,
{
"X"
,
"Y"
,
GradVarName
(
"Out"
)},
{
"axis"
},
{
GradVarName
(
"X"
),
GradVarName
(
"Y"
)});
}
}
// namespace phi
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add
,
add
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_sub
,
subtract
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_mul
,
multiply
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_div
,
divide
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_max
,
maximum
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_min
,
minimum
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_mod
,
modulo
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add_grad
,
add_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add_grad_grad
,
add_double_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_add_triple_grad
,
add_triple_grad
);
...
...
@@ -178,6 +223,8 @@ PD_REGISTER_BASE_KERNEL_NAME(elementwise_fmax, fmax);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_fmin
,
fmin
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_fmax_grad
,
fmax_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_fmin_grad
,
fmin_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_max_grad
,
maximum_grad
);
PD_REGISTER_BASE_KERNEL_NAME
(
elementwise_min_grad
,
minimum_grad
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_add
,
phi
::
ElementwiseAddOpArgumentMapping
);
...
...
@@ -187,6 +234,12 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_mul,
phi
::
ElementwiseMulOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_div
,
phi
::
ElementwiseDivOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_max
,
phi
::
ElementwiseMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_min
,
phi
::
ElementwiseMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_mod
,
phi
::
ElementwiseModOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_add_grad
,
phi
::
ElementwiseAddGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_add_grad_grad
,
...
...
@@ -211,8 +264,11 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_fmax,
phi
::
ElementwiseFMaxOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_fmin
,
phi
::
ElementwiseFMinOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_fmax_grad
,
phi
::
ElementwiseFMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_fmin_grad
,
phi
::
ElementwiseFMinGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_max_grad
,
phi
::
ElementwiseMaxGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
elementwise_min_grad
,
phi
::
ElementwiseMinGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录