kldiv_loss_op.cc 5.6 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dengkaipeng 已提交
12
#include <memory>
D
dengkaipeng 已提交
13
#include <string>
14
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using framework::Tensor;

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
30 31
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
32 33 34 35 36 37 38
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
39 40
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
41 42
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
43
    AddInput("Target",
D
dengkaipeng 已提交
44
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
45 46
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
47 48 49 50 51 52 53 54 55 56 57
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
58
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
59 60 61 62 63
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
64 65
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
66

D
dengkaipeng 已提交
67
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
68

D
dengkaipeng 已提交
69 70 71
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
72 73

         While :attr:`reduction` is :attr:`none`, output loss is in
D
dengkaipeng 已提交
74 75
         the same shape as Input(X), loss in each point is calculated 
         seperately and no reduction is applied.
D
dengkaipeng 已提交
76
         
D
dengkaipeng 已提交
77
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
78 79
         shape of [1] and loss value is the mean value of all losses.
         
D
dengkaipeng 已提交
80
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
81 82
         shape of [1] and loss value is the sum value of all losses.
         
D
dengkaipeng 已提交
83
         While :attr:`reduction` is :attr:`batchmean`, output loss is 
D
dengkaipeng 已提交
84 85
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
D
dengkaipeng 已提交
86 87 88 89 90 91 92 93 94
         
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
95 96 97 98
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Target"), "Input", "Target", "KLDivLossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Loss")), "Input",
                   "Loss@GRAD", "KLDivLossGrad");
D
dengkaipeng 已提交
99 100 101 102 103 104 105 106 107
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
108 109 110
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
                                   ctx.GetPlace());
D
dengkaipeng 已提交
111 112 113
  }
};

H
hong 已提交
114 115
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
D
dengkaipeng 已提交
116
 public:
H
hong 已提交
117
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
D
dengkaipeng 已提交
118 119

 protected:
120
  void Apply(GradOpPtr<T> op) const override {
D
dengkaipeng 已提交
121
    op->SetType("kldiv_loss_grad");
H
hong 已提交
122 123 124
    op->SetInput("X", this->Input("X"));
    op->SetInput("Target", this->Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
D
dengkaipeng 已提交
125

H
hong 已提交
126
    op->SetAttrMap(this->Attrs());
D
dengkaipeng 已提交
127

H
hong 已提交
128
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
D
dengkaipeng 已提交
129 130 131
  }
};

132
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInferer, "X");
133

D
dengkaipeng 已提交
134 135 136 137
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
138 139 140
DECLARE_INFER_SHAPE_FUNCTOR(kldiv_loss, KLDivInferShapeFunctor,
                            PD_INFER_META(phi::KLDivInferMeta));

D
dengkaipeng 已提交
141
REGISTER_OPERATOR(kldiv_loss, ops::KLDivLossOp, ops::KLDivLossOpMaker,
H
hong 已提交
142
                  ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
143 144
                  ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>,
                  KLDivInferShapeFunctor);
145
REGISTER_OPERATOR(kldiv_loss_grad, ops::KLDivLossOpGrad,
146
                  ops::KLDivLossGradNoNeedBufferVarInferer);