kldiv_loss_op.cc 7.8 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/kldiv_loss_op.h"
D
dengkaipeng 已提交
13
#include <memory>
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24 25
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class KLDivLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28 29 30 31 32 33 34
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of KLDivLossOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Target"), true,
                      platform::errors::NotFound(
                          "Input(Target) of KLDivLossOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Loss"), true,
                      platform::errors::NotFound(
                          "Output(Loss) of KLDivLossOp should not be null."));
D
dengkaipeng 已提交
35 36 37 38

    auto dim_x = ctx->GetInputDim("X");
    auto dim_target = ctx->GetInputDim("Target");
    PADDLE_ENFORCE_EQ(dim_x.size(), dim_target.size(),
39 40 41 42
                      platform::errors::InvalidArgument(
                          "Input(X) rank and Input(Target) rank should be "
                          "same, but received X rank(%d) != Target rank(%d)",
                          dim_x.size(), dim_target.size()));
D
dengkaipeng 已提交
43
    for (int i = 0; i < dim_x.size(); i++) {
44
      if (ctx->IsRuntime() || (dim_x[i] > 0 && dim_target[i] > 0)) {
45 46 47 48 49 50
        PADDLE_ENFORCE_EQ(
            dim_x[i], dim_target[i],
            platform::errors::InvalidArgument(
                "Input(X) and Input(Target) should in same shape. but received "
                "X dimension[%d](%d) != Target dimension[%d](%d)",
                i, dim_x[i], i, dim_target[i]));
51
      }
D
dengkaipeng 已提交
52 53 54 55
    }

    auto reduction = ctx->Attrs().Get<std::string>("reduction");

56 57 58 59 60 61
    auto reduction_valid = "mean" == reduction || "sum" == reduction ||
                           "batchmean" == reduction || "none" == reduction;
    PADDLE_ENFORCE_EQ(
        reduction_valid, true,
        platform::errors::InvalidArgument(
            "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."));
D
dengkaipeng 已提交
62 63 64 65

    if ("none" == reduction) {
      ctx->SetOutputDim("Loss", dim_x);
    } else {
D
dengkaipeng 已提交
66
      ctx->SetOutputDim("Loss", {1});
D
dengkaipeng 已提交
67 68 69 70 71 72
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
73 74
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
75 76 77 78 79 80 81
  }
};

class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
82 83
             "The input tensor of KL divergence loss operator. "
             "This is a tensor with shape of [N, *], where N is the "
K
Kaipeng Deng 已提交
84 85
             "batch size, * means any number of additional dimensions. "
             "The data type is float32 or flaot64");
D
dengkaipeng 已提交
86
    AddInput("Target",
D
dengkaipeng 已提交
87
             "The  tensor of KL divergence loss operator. "
K
Kaipeng Deng 已提交
88 89
             "This is a tensor with shape of Input(X). "
             "The data type is same as Input(X)");
D
dengkaipeng 已提交
90 91 92 93 94 95 96 97 98 99 100
    AddOutput(
        "Loss",
        "The output KL divergence loss tensor. if Attr(reduction) is "
        "'none', this tensor should be in same shape of of Input(X), else "
        "this tensor should be in shape of [1].");

    AddAttr<std::string>(
        "reduction",
        "The reduction type to apply to the output, available types "
        "are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
        "reduction, 'batchmean' for the sum of output divided by "
D
dengkaipeng 已提交
101
        "batch size, 'mean' for the average value of all output, "
D
dengkaipeng 已提交
102 103 104 105 106
        "'sum' for the sum of the output.")
        .SetDefault("mean");

    AddComment(R"DOC(
         This operator calculates the Kullback-Leibler divergence loss
K
Kaipeng Deng 已提交
107 108
         between Input(X) and Input(Target). Notes that Input(X) is the
         log-probability and Input(Target) is the probability.
D
dengkaipeng 已提交
109

D
dengkaipeng 已提交
110
         KL divergence loss is calculated as follows:
D
dengkaipeng 已提交
111

D
dengkaipeng 已提交
112 113 114
         $$l(x, y) = y * (\log(y) - x)$$

         While :math:`x` is Input(X) and :math:`y` is Input(Target).
D
dengkaipeng 已提交
115 116

         While :attr:`reduction` is :attr:`none`, output loss is in
D
dengkaipeng 已提交
117 118
         the same shape as Input(X), loss in each point is calculated 
         seperately and no reduction is applied.
D
dengkaipeng 已提交
119
         
D
dengkaipeng 已提交
120
         While :attr:`reduction` is :attr:`mean`, output loss is in
D
dengkaipeng 已提交
121 122
         shape of [1] and loss value is the mean value of all losses.
         
D
dengkaipeng 已提交
123
         While :attr:`reduction` is :attr:`sum`, output loss is in
D
dengkaipeng 已提交
124 125
         shape of [1] and loss value is the sum value of all losses.
         
D
dengkaipeng 已提交
126
         While :attr:`reduction` is :attr:`batchmean`, output loss is 
D
dengkaipeng 已提交
127 128
         in shape of [1] and loss value is the sum value of all losses
         divided by batch size.
D
dengkaipeng 已提交
129 130 131 132 133 134 135 136 137
         
         )DOC");
  }
};

class KLDivLossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
138 139 140 141 142 143 144 145 146
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Target"), true,
        platform::errors::NotFound("Input(Target) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Loss")), true,
        platform::errors::NotFound("Input(Loss@GRAD) should not be null"));
D
dengkaipeng 已提交
147 148 149 150 151 152 153 154 155
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156 157 158
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
                                   ctx.GetPlace());
D
dengkaipeng 已提交
159 160 161
  }
};

H
hong 已提交
162 163
template <typename T>
class KLDivLossOpGradMaker : public framework::SingleGradOpMaker<T> {
D
dengkaipeng 已提交
164
 public:
H
hong 已提交
165
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
D
dengkaipeng 已提交
166 167

 protected:
168
  void Apply(GradOpPtr<T> op) const override {
D
dengkaipeng 已提交
169
    op->SetType("kldiv_loss_grad");
H
hong 已提交
170 171 172
    op->SetInput("X", this->Input("X"));
    op->SetInput("Target", this->Input("Target"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
D
dengkaipeng 已提交
173

H
hong 已提交
174
    op->SetAttrMap(this->Attrs());
D
dengkaipeng 已提交
175

H
hong 已提交
176
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
D
dengkaipeng 已提交
177 178 179
  }
};

180
DECLARE_NO_NEED_BUFFER_VARS_INFERER(KLDivLossGradNoNeedBufferVarInference, "X");
181

D
dengkaipeng 已提交
182 183 184 185 186
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(kldiv_loss, ops::KLDivLossOp, ops::KLDivLossOpMaker,
H
hong 已提交
187 188
                  ops::KLDivLossOpGradMaker<paddle::framework::OpDesc>,
                  ops::KLDivLossOpGradMaker<paddle::imperative::OpBase>);
189 190
REGISTER_OPERATOR(kldiv_loss_grad, ops::KLDivLossOpGrad,
                  ops::KLDivLossGradNoNeedBufferVarInference);
D
dengkaipeng 已提交
191 192 193 194 195 196 197
REGISTER_OP_CPU_KERNEL(
    kldiv_loss, ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    kldiv_loss_grad,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::KLDivLossGradKernel<paddle::platform::CPUDeviceContext, double>);