beam_search_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16
#include "paddle/fluid/operators/beam_search_op.h"

17 18
#include <string>
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
20 21 22 23

namespace paddle {
namespace operators {

K
ktlichkid 已提交
24
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
25
 public:
Y
Yu Yang 已提交
26
  void Make() override {
Y
Yan Chunwei 已提交
27
    // inputs and outputs stored in proto
28 29 30 31
    AddInput("pre_ids",
             "(LoDTensor) The LoDTensor containing the selected ids at the "
             "previous step. It should be a tensor with shape (batch_size, 1) "
             "and lod `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at "
32
             "the first step.");
33 34 35 36 37
    AddInput("pre_scores",
             "(LoDTensor) The LoDTensor containing the accumulated "
             "scores corresponding to the selected ids at the previous step.");
    AddInput("ids",
             "(LoDTensor) The LoDTensor containing the candidates ids. Its "
38 39 40
             "shape should be (batch_size * beam_size, W). If not set, it will "
             "be calculated out according to Input(scores) in this operator.")
        .AsDispensable();
Y
Yan Chunwei 已提交
41
    AddInput("scores",
42 43 44 45 46 47 48
             "(LoDTensor) The LoDTensor containing the current scores "
             "corresponding to Input(ids). If Input(ids) is not nullptr, its "
             "shape is the same as that of Input(ids)."
             "If is_accumulated is true, Input(scores) is accumulated scores "
             "and will be used derectedly. Else, each score will be "
             "transformed to the log field and accumulate Input(pre_sores) "
             "first.");
Y
Yan Chunwei 已提交
49
    AddOutput("selected_ids",
50 51 52 53
              "A LodTensor that stores the IDs selected by beam search.");
    AddOutput("selected_scores",
              "A LoDTensor containing the accumulated scores corresponding to "
              "Output(selected_ids).");
54
    AddOutput("parent_idx",
T
tianshuo78520a 已提交
55
              "A Tensor preserving the selected_ids' parent index in pre_ids.")
56
        .AsDispensable();
Y
Yan Chunwei 已提交
57 58 59 60 61 62

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
63 64 65
    AddAttr<bool>("is_accumulated",
                  "Whether the Input(scores) is accumulated scores.")
        .SetDefault(true);
Y
Yan Chunwei 已提交
66

67
    AddComment(R"DOC(
M
minqiyang 已提交
68
This operator does the search in beams for one time step.
69 70 71 72 73 74 75 76 77 78 79 80 81
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
from the computation cell. Additionally, Input(pre_ids) and Input(pre_scores)
are the output of beam_search at previous step, they are needed for special use
to handle ended candidate translations. The paths linking prefixes and selected
candidates are organized and reserved in lod.

Note that the Input(scores) passed in should be accumulated scores, and
length penalty should be done with extra operators before calculating the
accumulated scores if needed, also suggest finding top-K before it and
using the top-K candidates following.
)DOC");
Y
Yan Chunwei 已提交
82 83 84
  }
};

K
ktlichkid 已提交
85
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
86 87
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
88

K
ktlichkid 已提交
89
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
90
    for (const std::string &arg :
91
         std::vector<std::string>({"pre_ids", "scores"})) {
92
      OP_INOUT_CHECK(ctx->HasInput(arg), "Input", arg, "BeamSeach");
K
ktlichkid 已提交
93 94 95
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
96
      OP_INOUT_CHECK(ctx->HasOutput(arg), "Output", arg, "BeamSeach");
K
ktlichkid 已提交
97
    }
98 99
  }

100
 protected:
101 102
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
103 104 105 106 107 108 109
    auto *scores = ctx.Input<framework::LoDTensor>("scores");
    size_t level = ctx.Attr<int>("level");
    size_t batch_size = scores->lod()[level].size() - 1;
    // The current CUDA kernel only support cases with batch_size < 4.
    // Compute on CPU for cases with batch_size > 4.
    if (batch_size <= 4) {
      return framework::OpKernelType(
110 111
          OperatorWithKernel::IndicateVarDataType(ctx, "pre_ids"),
          ctx.GetPlace());
112 113
    } else {
      return framework::OpKernelType(
114
          OperatorWithKernel::IndicateVarDataType(ctx, "pre_ids"),
115 116
          platform::CPUPlace());
    }
K
ktlichkid 已提交
117 118 119
  }
};

Q
Qiao Longfei 已提交
120 121
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
122
  void operator()(framework::InferVarTypeContext *ctx) const override {
123 124 125 126
    ctx->SetOutputType("selected_ids", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
    ctx->SetOutputType("selected_scores", framework::proto::VarType::LOD_TENSOR,
                       framework::ALL_ELEMENTS);
Q
Qiao Longfei 已提交
127 128
  }
};
K
ktlichkid 已提交
129

Y
Yan Chunwei 已提交
130 131
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
132

K
ktlichkid 已提交
133
namespace ops = paddle::operators;
K
ktlichkid 已提交
134 135 136

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
137 138 139
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
140 141 142
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);