beam_search_op.cc 10.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15
#include <algorithm>
Y
Yan Chunwei 已提交
16
#include <map>
17 18
#include <string>
#include <vector>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/fluid/operators/beam_search_op.h"
Y
Yan Chunwei 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
28
                            const framework::LoDTensor &pre_scores,
Y
Yan Chunwei 已提交
29 30
                            framework::LoDTensor *selected_ids,
                            framework::LoDTensor *selected_scores) {
Q
Qiao Longfei 已提交
31 32 33
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];

34
  auto items = SelectTopBeamSizeItems(pre_ids, pre_scores);
Q
Qiao Longfei 已提交
35 36 37 38 39 40 41 42
  auto selected_items = ToMap(items, high_level.back());
  VLOG(3) << "selected_items:";
  for (size_t i = 0; i < selected_items.size(); ++i) {
    VLOG(3) << "offset:" << i;
    for (auto &item : selected_items[i]) {
      VLOG(3) << ItemToString(item);
    }
  }
43 44

  PruneEndBeams(pre_ids, &selected_items);
Y
Yan Chunwei 已提交
45 46
  // calculate the output tensor's height
  size_t num_instances = std::accumulate(
Y
Yan Chunwei 已提交
47
      std::begin(selected_items), std::end(selected_items), 0,
Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55 56
      [](size_t a, std::vector<Item> &b) { return a + b.size(); });
  // the output tensor shape should be [num_instances, 1]
  auto dims = framework::make_ddim(
      std::vector<int64_t>({static_cast<int>(num_instances), 1}));
  selected_ids->Resize(dims);
  selected_scores->Resize(dims);

  std::map<size_t /*offset*/, std::vector<Item>> hash;
  framework::LoD new_lod;
57
  auto *ids_data = selected_ids->mutable_data<int64_t>(platform::CPUPlace());
Y
Yan Chunwei 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
  auto *scores_data =
      selected_scores->mutable_data<float>(platform::CPUPlace());

  // fill in data
  std::vector<size_t> low_level;
  size_t low_offset = 0;
  for (auto &items : selected_items) {
    low_level.push_back(low_offset);
    for (auto &item : items) {
      ids_data[low_offset] = item.id;
      scores_data[low_offset] = item.score;
      low_offset++;
    }
  }
Y
Yan Chunwei 已提交
72 73
  low_level.push_back(low_offset);

Y
Yan Chunwei 已提交
74 75 76 77
  // fill lod
  framework::LoD lod(2);
  lod[0].assign(high_level.begin(), high_level.end());
  lod[1].assign(low_level.begin(), low_level.end());
Q
Qiao Longfei 已提交
78 79 80
  if (!framework::CheckLoD(lod)) {
    PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
  }
Y
Yan Chunwei 已提交
81 82 83 84
  selected_ids->set_lod(lod);
  selected_scores->set_lod(lod);
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
void BeamSearch::PruneEndBeams(const framework::LoDTensor &pre_ids,
                               std::vector<std::vector<Item>> *items) {
  auto *pre_ids_data = pre_ids.data<int64_t>();
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];
  for (size_t src_idx = 0; src_idx < high_level.size(); ++src_idx) {
    size_t src_prefix_start = high_level[src_idx];
    size_t src_prefix_end = high_level[src_idx + 1];
    bool finish_flag = true;
    for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++) {
      for (auto &item : items->at(offset)) {
        if (item.id != static_cast<size_t>(end_id_) ||
            pre_ids_data[offset] != end_id_) {
          finish_flag = false;
          break;
        }
      }
      if (!finish_flag) break;
    }
    if (finish_flag) {  // all branchs of the beam (source sentence) end and
                        // prune this beam
      for (size_t offset = src_prefix_start; offset < src_prefix_end; offset++)
        items->at(offset).clear();
    }
  }
}

Y
Yan Chunwei 已提交
112
std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
Q
Qiao Longfei 已提交
113
    const std::vector<std::vector<Item>> &items, size_t element_num) {
Y
Yan Chunwei 已提交
114
  std::vector<std::vector<Item>> result;
Q
Qiao Longfei 已提交
115
  result.resize(element_num);
Y
Yan Chunwei 已提交
116 117 118 119 120 121 122 123
  for (auto &entries : items) {
    for (const auto &item : entries) {
      result[item.offset].push_back(item);
    }
  }
  return result;
}

124 125 126
std::vector<std::vector<BeamSearch::Item>> BeamSearch::SelectTopBeamSizeItems(
    const framework::LoDTensor &pre_ids,
    const framework::LoDTensor &pre_scores) {
Y
Yan Chunwei 已提交
127 128 129 130
  std::vector<std::vector<Item>> result;
  std::vector<Item> items;
  // for each source sentence, select the top beam_size items across all
  // candidate sets.
131
  while (NextItemSet(pre_ids, pre_scores, &items)) {
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141 142 143
    std::nth_element(std::begin(items), std::begin(items) + beam_size_,
                     std::end(items), [](const Item &a, const Item &b) {
                       // TODO(superjom) make score's comparation customizable.
                       // partial sort in descending order
                       return a.score > b.score;
                     });
    // prune the top beam_size items.
    if (items.size() > beam_size_) {
      items.resize(beam_size_);
    }
    result.emplace_back(items);
  }
Q
Qiao Longfei 已提交
144 145 146 147 148 149 150 151
  VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
  for (auto &items : result) {
    VLOG(3) << "item set:";
    for (auto &item : items) {
      VLOG(3) << ItemToString(item);
    }
  }

Y
Yan Chunwei 已提交
152 153 154 155
  return result;
}

// the candidates of a source
156 157 158
bool BeamSearch::NextItemSet(const framework::LoDTensor &pre_ids,
                             const framework::LoDTensor &pre_scores,
                             std::vector<BeamSearch::Item> *items) {
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165 166 167
  if (sent_offset_ >= ids_->NumElements(lod_level_)) {
    return false;
  }
  // find the current candidates
  auto ids = *ids_;
  auto scores = *scores_;

  auto abs_lod = framework::ToAbsOffset(ids.lod());

168
  auto *ids_data = ids.data<int64_t>();
Y
Yan Chunwei 已提交
169 170 171 172 173 174 175
  auto *scores_data = scores.data<float>();

  size_t instance_dim = 1;
  for (int i = 1; i < ids.dims().size(); i++) {
    instance_dim *= ids.dims()[i];
  }

176 177
  auto *pre_ids_data = pre_ids.data<int64_t>();
  auto *pre_scores_data = pre_scores.data<float>();
Y
Yan Chunwei 已提交
178 179 180 181
  items->clear();
  items->reserve(framework::product(ids.dims()));
  for (size_t offset = abs_lod[lod_level_][sent_offset_];
       offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) {
182 183 184 185
    auto pre_id = pre_ids_data[offset];
    auto pre_score = pre_scores_data[offset];
    if (pre_id == end_id_) {
      // Allocate all probability mass to eos_id for finished branchs and the
186
      // other candidate ids can be ignored.
187 188 189 190 191 192 193
      items->emplace_back(offset, end_id_, pre_score);
    } else {
      for (size_t d = 0; d < instance_dim; d++) {
        const size_t dim_offset = offset * instance_dim + d;
        items->emplace_back(offset, ids_data[dim_offset],
                            scores_data[dim_offset]);
      }
Y
Yan Chunwei 已提交
194 195 196 197 198 199 200
    }
  }

  sent_offset_++;
  return true;
}

Q
Qiao Longfei 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
std::ostream &operator<<(std::ostream &os, const BeamSearch::Item &item) {
  os << "{";
  os << "offset: " << item.offset << ", ";
  os << "id: " << item.id << ", ";
  os << "score: " << item.score << "";
  os << "}";

  return os;
}

std::string ItemToString(const BeamSearch::Item &item) {
  std::ostringstream stream;
  stream << item;
  return stream.str();
}

K
ktlichkid 已提交
217
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
218
 public:
Y
Yu Yang 已提交
219
  void Make() override {
Y
Yan Chunwei 已提交
220
    // inputs and outputs stored in proto
221 222
    AddInput("pre_ids", "ids in the previous step");
    AddInput("pre_scores", "accumulated scores in the previous step");
Y
Yan Chunwei 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    AddInput("ids", "a LoDTensor of shape of [None,k]");
    AddInput("scores",
             "a LoDTensor that has the same shape and LoD with `ids`");
    AddOutput("selected_ids",
              "a LoDTensor that stores the IDs selected by beam search");
    AddOutput(
        "selected_scores",
        "a LoDTensor that has the same shape and LoD with `selected_ids`");

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");

    AddComment(
        "This is a beam search operator that help to generate sequences.");
  }
};

K
ktlichkid 已提交
243
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
244 245
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
246

K
ktlichkid 已提交
247
 protected:
K
ktlichkid 已提交
248
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
249 250
    for (const std::string &arg :
         std::vector<std::string>({"pre_ids", "ids", "scores"})) {
K
ktlichkid 已提交
251 252
      PADDLE_ENFORCE(ctx->HasInput(arg), "BeamSearch need input argument '%s'",
                     arg);
K
ktlichkid 已提交
253 254 255
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
K
ktlichkid 已提交
256
      PADDLE_ENFORCE(ctx->HasOutput(arg),
K
ktlichkid 已提交
257 258
                     "BeamSearch need output argument '%s'", arg);
    }
259 260 261 262
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
263 264 265
    framework::OpKernelType kt = framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>("pre_ids")->type()),
K
ktlichkid 已提交
266
        platform::CPUPlace());
267
    return kt;
K
ktlichkid 已提交
268 269 270
  }
};

Q
Qiao Longfei 已提交
271 272 273 274 275
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    for (auto &o : op_desc.Output("selected_ids")) {
276 277
      auto &selected_ids = block->FindRecursiveOrCreateVar(o);
      selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
278 279
    }
    for (auto &o : op_desc.Output("selected_scores")) {
280 281
      auto &selected_scores = block->FindRecursiveOrCreateVar(o);
      selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
282 283 284
    }
  }
};
K
ktlichkid 已提交
285

Y
Yan Chunwei 已提交
286 287
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
288

K
ktlichkid 已提交
289
namespace ops = paddle::operators;
K
ktlichkid 已提交
290 291 292

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
293 294 295
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
296 297 298
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);