conv_cudnn_op.cu.cc 21.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
Q
qingqing01 已提交
18
#include "paddle/fluid/operators/conv_cudnn_helper.h"
19
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
20 21 22
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
23
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
25
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
26

Y
Yu Yang 已提交
27
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
28 29
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
30
            "true, the algorithm is deterministic.");
31 32
DEFINE_uint64(conv_workspace_size_limit,
              paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
33 34 35
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
翟飞跃 已提交
36
            "not, default is False.");
C
chengduoZH 已提交
37

武毅 已提交
38 39 40 41 42 43 44 45
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
46 47
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
48
using framework::AlgorithmsCache;
武毅 已提交
49

Q
qingqing01 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

武毅 已提交
67
template <typename T>
68
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
69 70
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
71
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
72
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
73
                   "It must use CUDAPlace.");
武毅 已提交
74 75 76 77 78 79 80 81
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
82 83
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
84

85 86 87 88 89 90
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }

武毅 已提交
91 92 93 94
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // ------------------- cudnn descriptors ---------------------
95 96 97 98
    ConvArgs args{input, filter, output, strides, paddings, dilations};
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    auto dtype = platform::CudnnDataType<T>::type;
武毅 已提交
99
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
100 101 102
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
103
    auto layout_format = GetCudnnTensorFormat(layout);
武毅 已提交
104

105 106
    args.handle = handle;
    args.cdesc.set(dtype, paddings, strides, dilations);
武毅 已提交
107
#if CUDNN_VERSION_MIN(7, 0, 1)
翟飞跃 已提交
108
    // cudnn 7 can support groups, no need to do it manually
武毅 已提交
109 110
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
111
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
112
        args.cdesc.desc(), groups));
武毅 已提交
113 114
    groups = 1;
#endif
115 116 117
    args.idesc.set(*input, groups);
    args.wdesc.set(*filter, layout_format, groups);
    args.odesc.set(*output, groups);
Q
qingqing01 已提交
118 119 120 121
    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(output->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w);
武毅 已提交
122

Q
qingqing01 已提交
123 124
    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
武毅 已提交
125 126
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
127
    size_t workspace_size = 0;  // final workspace to allocate.
武毅 已提交
128
    // ------------------- cudnn conv algorithm ---------------------
129
    cudnnConvolutionFwdAlgo_t algo{};
130

131 132 133
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
    algo = search::Find<T>(args, exhaustive_search, false, 0, ctx);
    workspace_size = search::GetWorkspaceSize(args, algo);
K
Kexin Zhao 已提交
134

武毅 已提交
135
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
136
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
137
    for (int i = 0; i < groups; i++) {
138 139 140 141 142 143 144 145 146 147
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
                handle, &alpha, args.idesc.desc(),
                input_data + i * group_offset_in, args.wdesc.desc(),
                filter_data + i * group_offset_filter, args.cdesc.desc(), algo,
                workspace_ptr, workspace_size, &beta, args.odesc.desc(),
                output_data + i * group_offset_out));
          },
          workspace_size);
武毅 已提交
148 149 150 151 152
    }
  }
};

template <typename T>
153
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
154 155
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
156
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
157
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
158
                   "It must use CUDAPlace.");
武毅 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
173 174
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
175 176
    bool deterministic = FLAGS_cudnn_deterministic;
    if (exhaustive_search && deterministic) {
177
      PADDLE_THROW(
翟飞跃 已提交
178
          "Can't set exhaustive_search True and "
179 180
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
181

182 183 184 185 186 187 188 189 190
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    ConvArgs args1{input_grad, filter,   output_grad,
                   strides,    paddings, dilations};
    ConvArgs args2{input,   filter_grad, output_grad,
                   strides, paddings,    dilations};
    // conv_cudnn_helper.h
    auto handle = dev_ctx.cudnn_handle();
    auto dtype = platform::CudnnDataType<T>::type;
武毅 已提交
191
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
192 193 194
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
195 196
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
197

Q
qingqing01 已提交
198 199 200 201 202
    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(output_grad->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h,
             &o_w);
武毅 已提交
203

Q
qingqing01 已提交
204 205
    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
武毅 已提交
206 207
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
208 209 210 211 212 213
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
    size_t workspace_size = 0;
    int iwo_groups, c_groups;
214

215 216 217 218
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
219
#endif
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234
    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(*input_grad, iwo_groups);
      args1.wdesc.set(*filter, layout_tensor, iwo_groups);
      args1.odesc.set(*output_grad, iwo_groups);
      args1.cdesc.set(dtype, paddings, strides, dilations, c_groups);

      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
          search1::Find<T>(args1, exhaustive_search, deterministic, 0, ctx);
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
武毅 已提交
235 236 237
    }

    if (filter_grad) {
238 239 240 241 242 243 244 245 246 247 248 249 250
      // ------------------- cudnn descriptors ---------------------
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      args2.handle = handle;
      args2.idesc.set(*input, iwo_groups);
      args2.wdesc.set(*filter_grad, layout_tensor, iwo_groups);
      args2.odesc.set(*output_grad, iwo_groups);
      args2.cdesc.set(dtype, paddings, strides, dilations, c_groups);

      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
          search2::Find<T>(args2, exhaustive_search, deterministic, 1, ctx);
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
251 252
    }

武毅 已提交
253
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
254
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
255
    if (input_grad) {
C
chengduoZH 已提交
256
      // Because beta is zero, it is unnecessary to reset input_grad.
武毅 已提交
257
      for (int i = 0; i < groups; i++) {
258 259 260 261 262 263 264 265 266 267
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
                  handle, &alpha, args1.wdesc.desc(),
                  filter_data + i * group_offset_filter, args1.odesc.desc(),
                  output_grad_data + i * group_offset_out, args1.cdesc.desc(),
                  data_algo, cudnn_workspace_ptr, workspace_size, &beta,
                  args1.idesc.desc(), input_grad_data + i * group_offset_in));
            },
            workspace_size);
武毅 已提交
268 269 270 271
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
C
chengduoZH 已提交
272
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
273
      for (int i = 0; i < groups; i++) {
274 275 276 277 278 279 280 281 282 283 284
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
                  handle, &alpha, args2.idesc.desc(),
                  input_data + i * group_offset_in, args2.odesc.desc(),
                  output_grad_data + i * group_offset_out, args2.cdesc.desc(),
                  filter_algo, cudnn_workspace_ptr, workspace_size, &beta,
                  args2.wdesc.desc(),
                  filter_grad_data + i * group_offset_filter));
            },
            workspace_size);
武毅 已提交
285 286 287 288 289
      }
    }
  }
};

Q
qingqing01 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use CUDAPlace.");
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;

    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    const std::vector<int>& paddings = ctx.Attr<std::vector<int>>("paddings");
    const std::vector<int>& dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
    if (exhaustive_search && deterministic) {
      PADDLE_THROW(
翟飞跃 已提交
332
          "Can't set exhaustive_search True and "
Q
qingqing01 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
          "FLAGS_cudnn_deterministic True at same time.");
    }

    int iwo_group = groups;
    int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_group = 1;
    c_group = groups;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{ddX, W, ddO, strides, paddings, dilations};
    ConvArgs args2{X, ddW, ddO, strides, paddings, dilations};
    ConvArgs args3{ddX, dW, dO, strides, paddings, dilations};
    ConvArgs args4{dX, ddW, dO, strides, paddings, dilations};

    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;
    if (ddO) {
      ddy = ddO->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(*ddX, iwo_group);
      args1.wdesc.set(*W, layout, iwo_group);
      args1.odesc.set(*ddO, iwo_group);
      args1.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
      fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, 0, ctx);
      workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(*X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(*ddO, iwo_group);
        args2.cdesc.set(dtype, paddings, strides, dilations, c_group);

        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, 0, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
      }
    }

    if (dW) {
      dw = dW->mutable_data<T>(ctx.GetPlace());
      args3.handle = handle;
      args3.idesc.set(*ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(*dO, iwo_group);
      args3.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
          search3::Find<T>(args3, exhaustive_search, deterministic, 1, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
    }

    if (ddW && dX) {
      dx = dX->mutable_data<T>(ctx.GetPlace());
      args4.handle = handle;
      args4.idesc.set(*dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(*dO, iwo_group);
      args4.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
          search4::Find<T>(args4, exhaustive_search, deterministic, 2, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(X->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(dO->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      ddx = ddX->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
                  handle, &alpha, args1.idesc.desc(), ddx + i * group_offset_in,
                  args1.wdesc.desc(), w + i * group_offset_filter,
                  args1.cdesc.desc(), fwd_algo1, workspace_ptr, workspace_size,
                  &beta, args1.odesc.desc(), ddy + i * group_offset_out));
            },
            workspace_size);
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args2.idesc.desc(), x + i * group_offset_in,
                    args2.wdesc.desc(), ddw + i * group_offset_filter,
                    args2.cdesc.desc(), fwd_algo2, workspace_ptr,
                    workspace_size, &alpha, args2.odesc.desc(),
                    ddy + i * group_offset_out));
              },
              workspace_size);
        }
      }
    }

    if (dW) {
      ddx = ddX->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
                  handle, &alpha, args3.idesc.desc(), ddx + i * group_offset_in,
                  args3.odesc.desc(), dy + i * group_offset_out,
                  args3.cdesc.desc(), filter_algo, workspace_ptr,
                  workspace_size, &beta, args3.wdesc.desc(),
                  dw + i * group_offset_filter));
            },
            workspace_size);
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
                  handle, &alpha, args4.wdesc.desc(),
                  ddw + i * group_offset_filter, args4.odesc.desc(),
                  dy + i * group_offset_out, args4.cdesc.desc(), data_algo,
                  workspace_ptr, workspace_size, &beta, args4.idesc.desc(),
                  dx + i * group_offset_in));
            },
            workspace_size);
      }
    }
  }
};

武毅 已提交
496 497 498
}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
499 500
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
501
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
502
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
503
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
504
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
505
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
506 507
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
Q
qingqing01 已提交
508 509 510 511 512
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
513

K
Kexin Zhao 已提交
514
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
515
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
516 517
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
518
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
519
                   paddle::operators::CUDNNConvGradOpKernel<float>,
520
                   paddle::operators::CUDNNConvGradOpKernel<double>);