conv_cudnn_op.cu.cc 15.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
31 32
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
33

Q
qiaolongfei 已提交
34 35
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
36 37

template <typename T>
38
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
39 40 41
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
42
                   "It must use CUDAPlace.");
武毅 已提交
43 44 45 46 47 48 49 50
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
51 52
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
53 54 55 56 57 58 59 60 61 62 63

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
64 65 66 67 68 69 70
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
71
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
72 73 74 75 76 77 78
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
79

C
chengduoZH 已提交
80 81 82 83 84 85
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
86 87

    int input_channels = input->dims()[1];
武毅 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
109

武毅 已提交
110 111
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
112
    int group_offset_out =
武毅 已提交
113
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
114 115 116 117 118 119 120 121 122 123
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
124 125
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
126 127 128 129 130

    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));
K
Kexin Zhao 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
    } else {
      PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
    }
#endif

武毅 已提交
148 149 150 151
    // get workspace size able to allocate
    PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
152 153 154 155 156
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
157
    // Allocate on GPU memory
D
dzhwinter 已提交
158
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
159 160
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
161
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174
    for (int i = 0; i < groups; i++) {
      PADDLE_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
175
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
176 177 178
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
179
                   "It must use CUDAPlace.");
武毅 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
194 195
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
196 197 198 199 200 201 202 203 204

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
205 206 207 208 209 210 211
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
212
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
213 214 215 216 217 218 219
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
220

C
chengduoZH 已提交
221 222
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
223
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
224 225 226 227
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
228 229

    int input_channels = input->dims()[1];
武毅 已提交
230 231 232 233 234 235 236 237 238 239 240
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
241
    int output_grad_channels = filter->dims()[0];
武毅 已提交
242 243 244 245 246 247 248 249 250 251
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
252

武毅 已提交
253 254 255 256
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
257 258 259 260 261 262 263 264 265 266
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
267 268
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
269 270 271 272 273 274 275 276 277
    if (input_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              handle, cudnn_filter_desc,
              // dyDesc: Handle to the previously initialized input differential
              // tensor descriptor.
              cudnn_output_grad_desc, cudnn_conv_desc,
              // dxDesc: Handle to the previously initialized output tensor
              // descriptor.
武毅 已提交
278
              cudnn_input_desc,
武毅 已提交
279 280 281 282 283
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &data_algo));
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
284
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc,
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &filter_algo));

      PADDLE_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
305
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
306 307
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
308
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
309 310
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
311 312
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
313 314 315 316 317
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
武毅 已提交
318 319
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + i * group_offset_in));
武毅 已提交
320 321 322 323 324
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
325
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
326 327 328 329 330
      for (int i = 0; i < groups; i++) {
        PADDLE_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace,
武毅 已提交
331
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
武毅 已提交
332 333 334 335 336 337 338 339 340 341 342
            filter_grad_data + i * group_offset_filter));
      }
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
343 344
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
345
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
346
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
347
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
348
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
349 350 351
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);

K
Kexin Zhao 已提交
352
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
353 354
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>);
K
Kexin Zhao 已提交
355
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
356 357
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);