unique_op.h 16.2 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Z
Zhang Ting 已提交
16
#include <algorithm>
Z
zhoukunsheng 已提交
17
#include <cmath>
Z
Zhang Ting 已提交
18 19
#include <numeric>
#include <set>
Z
zhoukunsheng 已提交
20 21 22
#include <unordered_map>
#include <utility>
#include <vector>
23

Z
zhoukunsheng 已提交
24
#include "paddle/fluid/framework/op_registry.h"
Z
Zhang Ting 已提交
25 26
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/transpose_op.h"
27
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zhoukunsheng 已提交
28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

template <typename InT>
struct UniqueOpFunctor {
  framework::Tensor* out_;
  framework::Tensor* index_;
  const framework::Tensor* in_;
37
  framework::Tensor* count_;
Z
zhoukunsheng 已提交
38

39 40
  UniqueOpFunctor(framework::Tensor* out,
                  framework::Tensor* index,
41 42 43
                  const framework::Tensor* in,
                  framework::Tensor* count = nullptr)
      : out_(out), index_(index), in_(in), count_(count) {}
Z
zhoukunsheng 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  template <typename IndexT>
  void apply() const {
    auto* in_data = in_->data<InT>();
    auto* index_data = index_->mutable_data<IndexT>(platform::CPUPlace());

    int64_t j = 0;

    // TODO(fangzeyang): Should optimize performance here.
    std::unordered_map<InT, int64_t> dict;
    std::vector<InT> uniq;

56
    PADDLE_ENFORCE_LT(
57 58
        in_->numel(),
        pow(2, 31),
59 60 61 62
        platform::errors::InvalidArgument(
            "The num of Input(X) elements should be less then INT_MAX, "
            "but received num is %d.",
            in_->numel()));
Z
zhoukunsheng 已提交
63 64 65 66

    for (auto i = 0; i < in_->numel(); i++) {
      auto it = dict.find(in_data[i]);
      if (it == dict.end()) {
67 68
        dict.emplace(std::make_pair(in_data[i], j));
        uniq.emplace_back(in_data[i]);
Z
zhoukunsheng 已提交
69 70 71 72 73 74 75
        index_data[i] = static_cast<IndexT>(j);
        j++;
      } else {
        index_data[i] = static_cast<IndexT>(it->second);
      }
    }

76 77
    if (count_ != nullptr) {
      // Resize the count tensor dims to allocate the memory
78
      count_->Resize(phi::make_ddim({static_cast<int64_t>(uniq.size())}));
79 80 81 82
      IndexT* count_data = count_->mutable_data<IndexT>(platform::CPUPlace());
      // init count_data to 0
      memset(count_data, 0, uniq.size() * sizeof(IndexT));

83
      const auto& index_type = framework::TransToProtoVarType(index_->dtype());
84 85
      bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                              index_type == framework::proto::VarType::INT64;
86 87
      PADDLE_ENFORCE_EQ(index_type_match,
                        true,
88 89 90 91 92 93 94 95
                        platform::errors::InvalidArgument(
                            "Index holds the wrong type, it holds %s, "
                            "but desires to be %s or %s",
                            paddle::framework::DataTypeToString(index_type),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT32),
                            paddle::framework::DataTypeToString(
                                framework::proto::VarType::INT64)));
96 97 98 99 100 101 102 103 104 105 106 107 108 109

      if (index_type == framework::proto::VarType::INT32) {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int32_t>(index)] += static_cast<IndexT>(1);
        }
      } else {
        for (auto i = 0; i < in_->numel(); ++i) {
          const IndexT& index = index_data[i];
          count_data[static_cast<int64_t>(index)] += static_cast<IndexT>(1);
        }
      }
    }

110
    out_->Resize(phi::make_ddim({static_cast<int64_t>(uniq.size())}));
Z
zhoukunsheng 已提交
111 112 113 114 115
    auto out_data = out_->mutable_data<InT>(platform::CPUPlace());
    std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
  }
};

Z
Zhang Ting 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static std::vector<framework::Tensor> Unbind(const framework::Tensor& in) {
  int64_t size = in.dims()[0];
  std::vector<framework::Tensor> tensors(size);
  for (int64_t i = 0; i < size; ++i) {
    tensors[i] = in.Slice(i, i + 1);
  }
  return tensors;
}

template <typename T>
static bool Equal(const framework::Tensor& a, const framework::Tensor& b) {
  if (a.numel() != b.numel()) {
    return false;
  }
  for (int64_t i = 0; i < a.numel(); ++i) {
    if (a.data<T>()[i] != b.data<T>()[i]) {
      return false;
    }
  }
  return true;
}

Z
Zhang Ting 已提交
138
template <typename InT, typename IndexT>
Z
Zhang Ting 已提交
139 140
static void UniqueFlattendTensor(const framework::ExecutionContext& context,
                                 const framework::Tensor& in,
141 142 143 144
                                 framework::Tensor* out,
                                 bool return_index,
                                 bool return_inverse,
                                 bool return_counts) {
Z
Zhang Ting 已提交
145 146
  const InT* in_data = in.data<InT>();
  std::set<InT> unique(in_data, in_data + in.numel());
147
  out->Resize(phi::make_ddim({static_cast<int64_t>(unique.size())}));
Z
Zhang Ting 已提交
148
  auto out_data = out->mutable_data<InT>(context.GetPlace());
Z
Zhang Ting 已提交
149 150 151 152
  std::copy(unique.begin(), unique.end(), out_data);

  if (return_index) {
    auto* indices = context.Output<framework::Tensor>("Indices");
153
    indices->Resize(phi::make_ddim({out->numel()}));
Z
Zhang Ting 已提交
154 155
    auto indices_data = indices->mutable_data<IndexT>(context.GetPlace());
    std::unordered_map<InT, IndexT> indices_map;
Z
Zhang Ting 已提交
156 157 158 159 160 161 162 163 164 165 166 167
    indices_map.reserve(out->numel());
    for (int64_t i = 0; i < in.numel(); ++i) {
      if (indices_map.find(in_data[i]) != indices_map.end()) continue;
      indices_map[in_data[i]] = i;
    }
    for (int64_t i = 0; i < out->numel(); ++i) {
      indices_data[i] = indices_map[out_data[i]];
    }
  }

  if (return_inverse) {
    auto* inverse = context.Output<framework::Tensor>("Index");
168
    inverse->Resize(phi::make_ddim({in.numel()}));
Z
Zhang Ting 已提交
169 170
    auto inverse_data = inverse->mutable_data<IndexT>(context.GetPlace());
    std::unordered_map<InT, IndexT> inverse_map;
Z
Zhang Ting 已提交
171 172 173 174 175 176 177 178 179 180 181
    inverse_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      inverse_map[out_data[i]] = i;
    }
    for (int64_t i = 0; i < in.numel(); ++i) {
      inverse_data[i] = inverse_map[in_data[i]];
    }
  }

  if (return_counts) {
    auto* count = context.Output<framework::Tensor>("Counts");
182
    count->Resize(phi::make_ddim({out->numel()}));
Z
Zhang Ting 已提交
183 184
    auto count_data = count->mutable_data<IndexT>(context.GetPlace());
    std::unordered_map<InT, IndexT> counts_map;
Z
Zhang Ting 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
    counts_map.reserve(out->numel());
    for (int64_t i = 0; i < out->numel(); ++i) {
      counts_map[out_data[i]] = 0;
    }
    for (int64_t i = 0; i < in.numel(); i++) {
      counts_map[in_data[i]] += 1;
    }
    for (int64_t i = 0; i < out->numel(); i++) {
      count_data[i] = counts_map[out_data[i]];
    }
  }
}

Z
Zhang Ting 已提交
198
template <class ForwardIt, typename InT, typename IndexT>
Z
Zhang Ting 已提交
199
static ForwardIt UniqueDimImpl(const framework::ExecutionContext& context,
200 201
                               ForwardIt first,
                               ForwardIt last,
Z
Zhang Ting 已提交
202 203 204 205
                               const std::vector<IndexT>& sorted_indices_vec,
                               std::vector<IndexT>* inverse_vec,
                               std::vector<IndexT>* counts_vec,
                               std::vector<IndexT>* indices_vec) {
Z
Zhang Ting 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
  if (first == last) {
    return last;
  }

  (*inverse_vec)[sorted_indices_vec[0]] = 0;
  (*counts_vec)[0] = 1;
  (*indices_vec)[0] = sorted_indices_vec[0];

  ForwardIt begin = first;
  ForwardIt result = first;

  while (++first != last) {
    int64_t idx_first = std::distance(begin, first);
    int64_t idx_result = std::distance(begin, result);
Z
Zhang Ting 已提交
220
    if (!Equal<InT>(*result, *first)) {
Z
Zhang Ting 已提交
221 222 223 224 225 226 227 228 229 230 231 232
      if (++result != first) {
        *result = std::move(*first);
      }
      idx_result += 1;
      (*indices_vec)[idx_result] = sorted_indices_vec[idx_first];
    }
    (*inverse_vec)[sorted_indices_vec[idx_first]] = idx_result;
    (*counts_vec)[idx_result] += 1;
  }
  return ++result;
}

Z
Zhang Ting 已提交
233
template <typename DeviceContext, typename InT, typename IndexT>
Z
Zhang Ting 已提交
234
static void UniqueDim(const framework::ExecutionContext& context,
235 236 237 238 239 240
                      const framework::Tensor& in,
                      framework::Tensor* out,
                      bool return_index,
                      bool return_inverse,
                      bool return_counts,
                      int axis) {
Z
Zhang Ting 已提交
241 242 243 244 245
  // transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
  std::vector<int> permute(in.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis] = 0;
  permute[0] = axis;
246
  std::vector<int64_t> in_trans_dims_vec(phi::vectorize(in.dims()));
Z
Zhang Ting 已提交
247 248 249
  in_trans_dims_vec[axis] = in.dims()[0];
  in_trans_dims_vec[0] = in.dims()[axis];
  framework::Tensor in_trans;
250
  framework::DDim in_trans_dims = phi::make_ddim(in_trans_dims_vec);
Z
Zhang Ting 已提交
251
  in_trans.Resize(in_trans_dims);
Z
Zhang Ting 已提交
252
  in_trans.mutable_data<InT>(context.GetPlace());
Z
Zhang Ting 已提交
253
  auto& dev_ctx = context.template device_context<DeviceContext>();
254 255
  TransCompute<DeviceContext, InT>(
      in.dims().size(), dev_ctx, in, &in_trans, permute);
Z
Zhang Ting 已提交
256
  // reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
257
  framework::DDim in_trans_flat_dims = phi::flatten_to_2d(in_trans_dims, 1);
Z
Zhang Ting 已提交
258 259 260
  in_trans.Resize(in_trans_flat_dims);

  // sort indices
Z
Zhang Ting 已提交
261
  std::vector<IndexT> sorted_indices_vec(in_trans.dims()[0]);
Z
Zhang Ting 已提交
262 263
  std::iota(sorted_indices_vec.begin(), sorted_indices_vec.end(), 0);
  int64_t col = in_trans.dims()[1];
Z
Zhang Ting 已提交
264
  const InT* in_trans_data = in_trans.data<InT>();
265 266
  std::sort(sorted_indices_vec.begin(),
            sorted_indices_vec.end(),
Z
Zhang Ting 已提交
267 268
            [&](int64_t a, int64_t b) -> bool {
              for (int64_t i = 0; i < col; ++i) {
Z
Zhang Ting 已提交
269 270
                InT lhs = in_trans_data[i + a * col];
                InT rhs = in_trans_data[i + b * col];
Z
Zhang Ting 已提交
271 272 273 274 275 276 277 278 279 280 281 282
                if (lhs < rhs) {
                  return true;
                } else if (lhs > rhs) {
                  return false;
                }
              }
              return false;
            });

  // sort tensor according to indices
  framework::Tensor input_sorted;
  input_sorted.Resize(in_trans_dims);
Z
Zhang Ting 已提交
283 284
  input_sorted.mutable_data<InT>(context.GetPlace());
  InT* input_sorted_data = input_sorted.data<InT>();
Z
Zhang Ting 已提交
285 286
  for (size_t i = 0; i < sorted_indices_vec.size(); ++i) {
    memcpy(input_sorted_data + i * col,
Z
Zhang Ting 已提交
287 288
           in_trans_data + static_cast<int64_t>(sorted_indices_vec[i]) * col,
           col * sizeof(InT));
Z
Zhang Ting 已提交
289 290 291
  }

  std::vector<framework::Tensor> input_unbind = Unbind(input_sorted);
Z
Zhang Ting 已提交
292 293 294 295
  std::vector<IndexT> inverse_vec(sorted_indices_vec.size(), 0);
  std::vector<IndexT> counts_vec(sorted_indices_vec.size(), 0);
  std::vector<IndexT> indices_vec(sorted_indices_vec.size(), 0);
  auto last = UniqueDimImpl<std::vector<framework::Tensor>::iterator, InT>(
296 297 298 299 300 301 302
      context,
      input_unbind.begin(),
      input_unbind.end(),
      sorted_indices_vec,
      &inverse_vec,
      &counts_vec,
      &indices_vec);
Z
Zhang Ting 已提交
303 304 305 306 307
  input_unbind.erase(last, input_unbind.end());
  counts_vec.erase(counts_vec.begin() + input_unbind.size(), counts_vec.end());
  indices_vec.erase(indices_vec.begin() + input_unbind.size(),
                    indices_vec.end());

Z
Zhang Ting 已提交
308
  math::ConcatFunctor<DeviceContext, InT> concat_functor;
Z
Zhang Ting 已提交
309 310 311
  framework::Tensor out_trans;
  std::vector<int64_t> out_trans_dims_vec = in_trans_dims_vec;
  out_trans_dims_vec[0] = input_unbind.size();
312
  out_trans.Resize(phi::make_ddim(out_trans_dims_vec));
Z
Zhang Ting 已提交
313
  out_trans.mutable_data<InT>(context.GetPlace());
Z
Zhang Ting 已提交
314
  std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]);
315
  out->Resize(phi::make_ddim(out_trans_dims_vec));
Z
Zhang Ting 已提交
316
  out->mutable_data<InT>(context.GetPlace());
Z
Zhang Ting 已提交
317
  concat_functor(dev_ctx, input_unbind, 0, &out_trans);
318 319
  TransCompute<DeviceContext, InT>(
      out_trans.dims().size(), dev_ctx, out_trans, out, permute);
Z
Zhang Ting 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

  if (return_inverse) {
    auto* inverse = context.Output<framework::Tensor>("Index");
    framework::TensorFromVector(inverse_vec, context.device_context(), inverse);
  }

  if (return_counts) {
    auto* count = context.Output<framework::Tensor>("Counts");
    framework::TensorFromVector(counts_vec, context.device_context(), count);
  }

  if (return_index) {
    auto* indices = context.Output<framework::Tensor>("Indices");
    framework::TensorFromVector(indices_vec, context.device_context(), indices);
  }
}

Z
Zhang Ting 已提交
337 338 339 340 341 342 343 344 345 346 347
template <typename DeviceContext, typename InT>
struct UniqueFlattendTensorFunctor {
  const framework::ExecutionContext& ctx_;
  const framework::Tensor& in_;
  framework::Tensor* out_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueFlattendTensorFunctor(const framework::ExecutionContext& context,
                              const framework::Tensor& in,
348 349 350 351
                              framework::Tensor* out,
                              bool return_index,
                              bool return_inverse,
                              bool return_counts)
Z
Zhang Ting 已提交
352 353 354 355 356 357 358 359 360
      : ctx_(context),
        in_(in),
        out_(out),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
361 362
    UniqueFlattendTensor<InT, IndexT>(
        ctx_, in_, out_, return_index_, return_inverse_, return_counts_);
Z
Zhang Ting 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
  }
};

template <typename DeviceContext, typename InT>
struct UniqueDimFunctor {
  const framework::ExecutionContext& ctx_;
  const framework::Tensor& in_;
  framework::Tensor* out_;
  const int axis_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueDimFunctor(const framework::ExecutionContext& context,
377 378 379 380 381
                   const framework::Tensor& in,
                   framework::Tensor* out,
                   const int axis,
                   bool return_index,
                   bool return_inverse,
Z
Zhang Ting 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                   bool return_counts)
      : ctx_(context),
        in_(in),
        out_(out),
        axis_(axis),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
    UniqueDim<DeviceContext, InT, IndexT>(
        ctx_, in_, out_, return_index_, return_inverse_, return_counts_, axis_);
  }
};

Z
Zhang Ting 已提交
398
template <typename DeviceContext, typename T>
Z
zhoukunsheng 已提交
399 400 401 402 403
class UniqueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
Z
Zhang Ting 已提交
404 405 406 407
    auto data_type = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    if (data_type == framework::proto::VarType::INT32) {
      PADDLE_ENFORCE_LE(
408 409
          x->numel(),
          INT_MAX,
Z
Zhang Ting 已提交
410 411 412 413 414 415
          platform::errors::InvalidArgument(
              "The number of elements in Input(X) should be less than or "
              "equal to INT_MAX, but received num is %d. Please set `dtype` to "
              "int64.",
              x->numel()));
    }
Z
Zhang Ting 已提交
416 417 418 419 420 421
    if (!context.Attr<bool>("is_sorted")) {
      auto* index = context.Output<framework::Tensor>("Index");

      framework::VisitDataType(data_type, UniqueOpFunctor<T>(out, index, x));
      return;
    }
Z
zhoukunsheng 已提交
422

Z
Zhang Ting 已提交
423 424 425 426
    std::vector<int> axis_vec = context.Attr<std::vector<int>>("axis");
    bool return_index = context.Attr<bool>("return_index");
    bool return_inverse = context.Attr<bool>("return_inverse");
    bool return_counts = context.Attr<bool>("return_counts");
427 428 429 430
    if (x->numel() == 0) {
      out->mutable_data<T>(context.GetPlace());
      return;
    }
Z
Zhang Ting 已提交
431
    if (axis_vec.empty()) {
432
      framework::VisitDataTypeTiny(
Z
Zhang Ting 已提交
433 434 435
          data_type,
          UniqueFlattendTensorFunctor<DeviceContext, T>(
              context, *x, out, return_index, return_inverse, return_counts));
Z
Zhang Ting 已提交
436 437
    } else {
      int axis = axis_vec[0];
438
      framework::VisitDataTypeTiny(
439 440 441 442 443 444 445 446
          data_type,
          UniqueDimFunctor<DeviceContext, T>(context,
                                             *x,
                                             out,
                                             axis,
                                             return_index,
                                             return_inverse,
                                             return_counts));
Z
Zhang Ting 已提交
447
    }
Z
zhoukunsheng 已提交
448 449 450 451 452
  }
};

}  // namespace operators
}  // namespace paddle