common_graph_table.h 21.3 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
S
seemingwang 已提交
20 21 22 23 24 25
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
26
#include <list>
S
seemingwang 已提交
27
#include <map>
S
seemingwang 已提交
28 29
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
30 31 32
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
33
#include <string>
S
seemingwang 已提交
34
#include <thread>
S
seemingwang 已提交
35
#include <unordered_map>
S
seemingwang 已提交
36
#include <unordered_set>
S
seemingwang 已提交
37 38
#include <utility>
#include <vector>
39 40
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
41
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
42
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
43
#include "paddle/fluid/string/string_helper.h"
44
#include "paddle/phi/core/utils/rw_lock.h"
45

46
#ifdef PADDLE_WITH_HETERPS
Z
zhaocaibei123 已提交
47
#include "paddle/fluid/distributed/ps/table/depends/rocksdb_warpper.h"
48 49
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
50 51 52 53 54 55
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
56
  ~GraphShard();
S
seemingwang 已提交
57 58
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
59 60
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
61
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
62 63 64 65
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
66 67 68 69 70 71 72
  std::vector<int64_t> get_all_id() {
    std::vector<int64_t> res;
    for (int i = 0; i < (int)bucket.size(); i++) {
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
73
  GraphNode *add_graph_node(int64_t id);
74
  GraphNode *add_graph_node(Node *node);
75 76 77
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
78
  void clear();
79 80
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
81 82 83 84
    return node_location;
  }

 private:
85
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
86 87
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
88 89 90 91

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
92
  int idx;
93
  int64_t node_key;
S
seemingwang 已提交
94
  size_t sample_size;
95
  bool is_weighted;
96 97 98 99 100 101 102
  SampleKey(int _idx, int64_t _node_key, size_t _sample_size,
            bool _is_weighted) {
    idx = _idx;
    node_key = _node_key;
    sample_size = _sample_size;
    is_weighted = _is_weighted;
  }
S
seemingwang 已提交
103
  bool operator==(const SampleKey &s) const {
104 105
    return idx == s.idx && node_key == s.node_key &&
           sample_size == s.sample_size && is_weighted == s.is_weighted;
S
seemingwang 已提交
106 107 108 109 110 111
  }
};

class SampleResult {
 public:
  size_t actual_size;
112 113 114 115 116 117 118
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
133
template <typename K, typename V>
S
seemingwang 已提交
134 135
class ScaledLRU;

136
template <typename K, typename V>
S
seemingwang 已提交
137 138
class RandomSampleLRU {
 public:
139 140 141
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
142 143 144
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
145
    total_diff = 0;
S
seemingwang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
159 160 161 162 163 164 165 166 167 168 169 170 171 172
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
173 174
        }
      }
175 176 177 178 179
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
180 181 182 183 184 185 186
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
187 188 189 190 191 192 193 194 195 196 197 198
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
199 200
      }
    }
201 202 203 204 205 206
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
207 208 209
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
210 211
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
212
    node_size--;
213 214
    key_map.erase(node->key);
    delete node;
215 216 217
  }

  void process_redundant(int process_size) {
218
    int length = std::min(remove_count, process_size);
219 220 221
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
222
    }
223
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
224 225
  }

226 227 228 229 230 231 232 233 234 235 236 237
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
238 239 240 241 242 243 244 245 246 247 248
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

249 250 251 252 253 254 255 256 257 258 259 260 261
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
262
 private:
263 264
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
265
  size_t global_ttl, size_limit;
266
  int node_size, total_diff;
S
seemingwang 已提交
267
  LRUNode<K, V> *node_head, *node_end;
268
  friend class ScaledLRU<K, V>;
269
  int remove_count;
S
seemingwang 已提交
270 271
};

272
template <typename K, typename V>
S
seemingwang 已提交
273 274
class ScaledLRU {
 public:
275
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
276
      : size_limit(size_limit), ttl(_ttl) {
277
    shard_num = _shard_num;
S
seemingwang 已提交
278 279 280 281
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
282 283
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
284 285 286 287
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
288
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
289 290 291 292 293
          if (stop) {
            return;
          }
        }
        auto status =
Z
zhaocaibei123 已提交
294
            thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
  LRUResponse query(size_t index, K *keys, size_t length,
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
Z
zhaocaibei123 已提交
312
  int Shrink() {
S
seemingwang 已提交
313 314
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
315
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
316 317
    }

318
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
319
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
320 321 322 323
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
324
      if ((size_t)global_count > size_limit) {
325
        size_t remove = global_count - size_limit;
326
        for (size_t i = 0; i < lru_pool.size(); i++) {
327 328 329 330
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
331 332 333 334 335 336 337
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
338

S
seemingwang 已提交
339 340 341
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
342
      if (global_count > int(1.25 * size_limit)) {
Z
zhaocaibei123 已提交
343
        thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
344 345 346 347 348 349 350 351
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
352
  size_t shard_num;
S
seemingwang 已提交
353
  int global_count;
354
  size_t size_limit, total, hit;
S
seemingwang 已提交
355 356 357
  size_t ttl;
  bool stop;
  std::thread shrink_job;
358
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
359 360 361
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
362
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
363 364
};

365
/*
366 367 368 369 370 371 372 373 374 375 376 377
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
378 379 380
  virtual int loadData(const std::string &path){
    return 0;
  }
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif
421
*/
422

423
class GraphTable : public Table {
S
seemingwang 已提交
424
 public:
425 426 427 428
  GraphTable() {
    use_cache = false;
    shard_num = 0;
    rw_lock.reset(new pthread_rwlock_t());
429 430 431 432
#ifdef PADDLE_WITH_HETERPS
    next_partition = 0;
    total_memory_cost = 0;
#endif
433
  }
434
  virtual ~GraphTable();
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

  virtual void *GetShard(size_t shard_idx) { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

  static size_t get_sparse_shard(uint32_t shard_num, uint32_t server_num,
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }

452
  virtual int32_t pull_graph_list(int type_id, int idx, int start, int size,
S
seemingwang 已提交
453 454 455 456
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

457
  virtual int32_t random_sample_neighbors(
458
      int idx, int64_t *node_ids, int sample_size,
459
      std::vector<std::shared_ptr<char>> &buffers,
460
      std::vector<int> &actual_sizes, bool need_weight);
S
seemingwang 已提交
461

462 463
  int32_t random_sample_nodes(int type_id, int idx, int sample_size,
                              std::unique_ptr<char[]> &buffers,
S
seemingwang 已提交
464 465 466
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
467 468
      int type_id, int idx, std::vector<std::pair<int, int>> ranges,
      std::vector<int64_t> &res);
Z
zhaocaibei123 已提交
469 470
  virtual int32_t Initialize() { return 0; }
  virtual int32_t Initialize(const TableParameter &config,
471
                             const FsClientParameter &fs_config);
Z
zhaocaibei123 已提交
472 473
  virtual int32_t Initialize(const GraphParameter &config);
  int32_t Load(const std::string &path, const std::string &param);
S
seemingwang 已提交
474

475 476
  int32_t load_edges(const std::string &path, bool reverse,
                     const std::string &edge_type);
S
seemingwang 已提交
477

478 479
  std::vector<std::vector<int64_t>> get_all_id(int type, int idx,
                                               int slice_num);
S
seemingwang 已提交
480 481
  int32_t load_nodes(const std::string &path, std::string node_type);

482
  int32_t add_graph_node(int idx, std::vector<int64_t> &id_list,
483 484
                         std::vector<bool> &is_weight_list);

485
  int32_t remove_graph_node(int idx, std::vector<int64_t> &id_list);
486

487
  int32_t get_server_index_by_id(int64_t id);
488
  Node *find_node(int type_id, int idx, int64_t id);
S
seemingwang 已提交
489

Y
yaoxuefeng 已提交
490 491 492
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

493
  virtual int32_t clear_nodes(int type, int idx);
Z
zhaocaibei123 已提交
494 495 496
  virtual void Clear() {}
  virtual int32_t Flush() { return 0; }
  virtual int32_t Shrink(const std::string &param) { return 0; }
S
seemingwang 已提交
497
  //指定保存路径
Z
zhaocaibei123 已提交
498
  virtual int32_t Save(const std::string &path, const std::string &converter) {
S
seemingwang 已提交
499 500
    return 0;
  }
Z
zhaocaibei123 已提交
501 502
  virtual int32_t InitializeShard() { return 0; }
  virtual int32_t SetShard(size_t shard_idx, size_t server_num) {
503 504 505 506 507 508 509 510 511 512 513 514
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
515 516
  virtual std::pair<int32_t, std::string> parse_feature(int idx,
                                                        std::string feat_str);
S
seemingwang 已提交
517

518
  virtual int32_t get_node_feat(int idx, const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
519 520 521
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
522
  virtual int32_t set_node_feat(
523
      int idx, const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
524 525 526
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
527
  size_t get_server_num() { return server_num; }
528
  void clear_graph(int idx);
529
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
530 531 532
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
533
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
534
            task_pool_size_, size_limit, ttl));
535 536 537 538 539
        use_cache = true;
      }
    }
    return 0;
  }
540
  virtual void load_node_weight(int type_id, int idx, std::string path);
541
#ifdef PADDLE_WITH_HETERPS
542 543 544 545 546 547 548 549 550 551 552 553
  // virtual int32_t start_graph_sampling() {
  //   return this->graph_sampler->start_graph_sampling();
  // }
  // virtual int32_t end_graph_sampling() {
  //   return this->graph_sampler->end_graph_sampling();
  // }
  // virtual int32_t set_graph_sample_callback(
  //     std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
  //         callback) {
  //   graph_sampler->set_graph_sample_callback(callback);
  //   return 0;
  // }
554
  virtual void make_partitions(int idx, int64_t gb_size, int device_len);
555
  virtual void export_partition_files(int idx, std::string file_path);
556
  virtual char *random_sample_neighbor_from_ssd(
557 558 559 560
      int idx, int64_t id, int sample_size,
      const std::shared_ptr<std::mt19937_64> rng, int &actual_size);
  virtual int32_t add_node_to_ssd(int type_id, int idx, int64_t src_id,
                                  char *data, int len);
561
  virtual paddle::framework::GpuPsCommGraph make_gpu_ps_graph(
562
      int idx, std::vector<int64_t> ids);
563 564 565 566 567 568 569 570 571 572 573 574 575 576
  int32_t Load_to_ssd(const std::string &path, const std::string &param);
  int64_t load_graph_to_memory_from_ssd(int idx, std::vector<int64_t> &ids);
  int32_t make_complementary_graph(int idx, int64_t byte_size);
  int32_t dump_edges_to_ssd(int idx);
  int32_t get_partition_num(int idx) { return partitions[idx].size(); }
  std::vector<int64_t> get_partition(int idx, int index) {
    if (idx >= partitions.size() || index >= partitions[idx].size())
      return std::vector<int64_t>();
    return partitions[idx][index];
  }
  int32_t load_edges_to_ssd(const std::string &path, bool reverse_edge,
                            const std::string &edge_type);
  int32_t load_next_partition(int idx);
  void set_search_level(int search_level) { this->search_level = search_level; }
577
  int search_level;
578 579 580
  int64_t total_memory_cost;
  std::vector<std::vector<std::vector<int64_t>>> partitions;
  int next_partition;
581
#endif
582 583 584
  virtual int32_t add_comm_edge(int idx, int64_t src_id, int64_t dst_id);
  virtual int32_t build_sampler(int idx, std::string sample_type = "random");
  std::vector<std::vector<GraphShard *>> edge_shards, feature_shards;
S
seemingwang 已提交
585
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
586
  int task_pool_size_ = 24;
S
seemingwang 已提交
587 588
  const int random_sample_nodes_ranges = 3;

589
  std::vector<std::vector<std::unordered_map<int64_t, double>>> node_weight;
590 591 592 593 594 595
  std::vector<std::vector<std::string>> feat_name;
  std::vector<std::vector<std::string>> feat_dtype;
  std::vector<std::vector<int32_t>> feat_shape;
  std::vector<std::unordered_map<std::string, int32_t>> feat_id_map;
  std::unordered_map<std::string, int> feature_to_id, edge_to_id;
  std::vector<std::string> id_to_feature, id_to_edge;
S
seemingwang 已提交
596 597 598 599
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
600
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
601
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
602 603
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
604
  bool use_cache, use_duplicate_nodes;
605 606
  int cache_size_limit;
  int cache_ttl;
607
  mutable std::mutex mutex_;
608 609 610
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
611 612 613 614
  paddle::distributed::RocksDBHandler *_db;
// std::shared_ptr<::ThreadPool> graph_sample_pool;
// std::shared_ptr<GraphSampler> graph_sampler;
// REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
615 616 617
#endif
};

618
/*
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
654
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
655 656 657
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
658
};
659
#endif
660
*/
661
}  // namespace distributed
662

663
};  // namespace paddle
664 665 666 667 668 669

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
670
    return s.idx ^ s.node_key ^ s.sample_size;
671 672 673
  }
};
}