common_graph_table.h 19.8 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
S
seemingwang 已提交
20 21 22 23 24 25
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
26
#include <list>
S
seemingwang 已提交
27
#include <map>
S
seemingwang 已提交
28 29
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
30 31 32
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
33
#include <string>
S
seemingwang 已提交
34
#include <thread>
S
seemingwang 已提交
35
#include <unordered_map>
S
seemingwang 已提交
36
#include <unordered_set>
S
seemingwang 已提交
37 38
#include <utility>
#include <vector>
39 40
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
41
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
42
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
43
#include "paddle/fluid/string/string_helper.h"
44
#include "paddle/phi/core/utils/rw_lock.h"
45

46
#ifdef PADDLE_WITH_HETERPS
Z
zhaocaibei123 已提交
47
#include "paddle/fluid/distributed/ps/table/depends/rocksdb_warpper.h"
48 49
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
50 51 52 53 54 55
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
56
  ~GraphShard();
S
seemingwang 已提交
57 58
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
59 60
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
61
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
62 63 64 65
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
S
seemingwang 已提交
66

67
  GraphNode *add_graph_node(int64_t id);
68
  GraphNode *add_graph_node(Node *node);
69 70 71
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
72
  void clear();
73 74
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
75 76 77 78
    return node_location;
  }

 private:
79
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
80 81
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
82 83 84 85

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
86
  int idx;
87
  int64_t node_key;
S
seemingwang 已提交
88
  size_t sample_size;
89
  bool is_weighted;
90 91 92 93 94 95 96
  SampleKey(int _idx, int64_t _node_key, size_t _sample_size,
            bool _is_weighted) {
    idx = _idx;
    node_key = _node_key;
    sample_size = _sample_size;
    is_weighted = _is_weighted;
  }
S
seemingwang 已提交
97
  bool operator==(const SampleKey &s) const {
98 99
    return idx == s.idx && node_key == s.node_key &&
           sample_size == s.sample_size && is_weighted == s.is_weighted;
S
seemingwang 已提交
100 101 102 103 104 105
  }
};

class SampleResult {
 public:
  size_t actual_size;
106 107 108 109 110 111 112
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
127
template <typename K, typename V>
S
seemingwang 已提交
128 129
class ScaledLRU;

130
template <typename K, typename V>
S
seemingwang 已提交
131 132
class RandomSampleLRU {
 public:
133 134 135
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
136 137 138
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
139
    total_diff = 0;
S
seemingwang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
153 154 155 156 157 158 159 160 161 162 163 164 165 166
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
167 168
        }
      }
169 170 171 172 173
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
174 175 176 177 178 179 180
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
181 182 183 184 185 186 187 188 189 190 191 192
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
193 194
      }
    }
195 196 197 198 199 200
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
201 202 203
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
204 205
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
206
    node_size--;
207 208
    key_map.erase(node->key);
    delete node;
209 210 211
  }

  void process_redundant(int process_size) {
212
    int length = std::min(remove_count, process_size);
213 214 215
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
216
    }
217
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
218 219
  }

220 221 222 223 224 225 226 227 228 229 230 231
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
232 233 234 235 236 237 238 239 240 241 242
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

243 244 245 246 247 248 249 250 251 252 253 254 255
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
256
 private:
257 258
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
259
  size_t global_ttl, size_limit;
260
  int node_size, total_diff;
S
seemingwang 已提交
261
  LRUNode<K, V> *node_head, *node_end;
262
  friend class ScaledLRU<K, V>;
263
  int remove_count;
S
seemingwang 已提交
264 265
};

266
template <typename K, typename V>
S
seemingwang 已提交
267 268
class ScaledLRU {
 public:
269
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
270
      : size_limit(size_limit), ttl(_ttl) {
271
    shard_num = _shard_num;
S
seemingwang 已提交
272 273 274 275
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
276 277
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
278 279 280 281
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
282
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
283 284 285 286 287
          if (stop) {
            return;
          }
        }
        auto status =
Z
zhaocaibei123 已提交
288
            thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
  LRUResponse query(size_t index, K *keys, size_t length,
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
Z
zhaocaibei123 已提交
306
  int Shrink() {
S
seemingwang 已提交
307 308
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
309
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
310 311
    }

312
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
313
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
314 315 316 317
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
318
      if ((size_t)global_count > size_limit) {
319
        size_t remove = global_count - size_limit;
320
        for (size_t i = 0; i < lru_pool.size(); i++) {
321 322 323 324
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
325 326 327 328 329 330 331
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
332

S
seemingwang 已提交
333 334 335
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
336
      if (global_count > int(1.25 * size_limit)) {
Z
zhaocaibei123 已提交
337
        thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
338 339 340 341 342 343 344 345
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
346
  size_t shard_num;
S
seemingwang 已提交
347
  int global_count;
348
  size_t size_limit, total, hit;
S
seemingwang 已提交
349 350 351
  size_t ttl;
  bool stop;
  std::thread shrink_job;
352
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
353 354 355
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
356
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
357 358
};

359
/*
360 361 362 363 364 365 366 367 368 369 370 371
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
372 373 374
  virtual int loadData(const std::string &path){
    return 0;
  }
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif
415
*/
416

417
class GraphTable : public Table {
S
seemingwang 已提交
418
 public:
419 420 421 422 423
  GraphTable() {
    use_cache = false;
    shard_num = 0;
    rw_lock.reset(new pthread_rwlock_t());
  }
424
  virtual ~GraphTable();
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

  virtual void *GetShard(size_t shard_idx) { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

  static size_t get_sparse_shard(uint32_t shard_num, uint32_t server_num,
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }

442
  virtual int32_t pull_graph_list(int type_id, int idx, int start, int size,
S
seemingwang 已提交
443 444 445 446
                                  std::unique_ptr<char[]> &buffer,
                                  int &actual_size, bool need_feature,
                                  int step);

447
  virtual int32_t random_sample_neighbors(
448
      int idx, int64_t *node_ids, int sample_size,
449
      std::vector<std::shared_ptr<char>> &buffers,
450
      std::vector<int> &actual_sizes, bool need_weight);
S
seemingwang 已提交
451

452 453
  int32_t random_sample_nodes(int type_id, int idx, int sample_size,
                              std::unique_ptr<char[]> &buffers,
S
seemingwang 已提交
454 455 456
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
457 458
      int type_id, int idx, std::vector<std::pair<int, int>> ranges,
      std::vector<int64_t> &res);
Z
zhaocaibei123 已提交
459 460
  virtual int32_t Initialize() { return 0; }
  virtual int32_t Initialize(const TableParameter &config,
461
                             const FsClientParameter &fs_config);
Z
zhaocaibei123 已提交
462 463
  virtual int32_t Initialize(const GraphParameter &config);
  int32_t Load(const std::string &path, const std::string &param);
S
seemingwang 已提交
464

465 466
  int32_t load_edges(const std::string &path, bool reverse,
                     const std::string &edge_type);
S
seemingwang 已提交
467 468 469

  int32_t load_nodes(const std::string &path, std::string node_type);

470
  int32_t add_graph_node(int idx, std::vector<int64_t> &id_list,
471 472
                         std::vector<bool> &is_weight_list);

473
  int32_t remove_graph_node(int idx, std::vector<int64_t> &id_list);
474

475
  int32_t get_server_index_by_id(int64_t id);
476
  Node *find_node(int type_id, int idx, int64_t id);
S
seemingwang 已提交
477

Y
yaoxuefeng 已提交
478 479 480
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

481
  virtual int32_t clear_nodes(int type, int idx);
Z
zhaocaibei123 已提交
482 483 484
  virtual void Clear() {}
  virtual int32_t Flush() { return 0; }
  virtual int32_t Shrink(const std::string &param) { return 0; }
S
seemingwang 已提交
485
  //指定保存路径
Z
zhaocaibei123 已提交
486
  virtual int32_t Save(const std::string &path, const std::string &converter) {
S
seemingwang 已提交
487 488
    return 0;
  }
Z
zhaocaibei123 已提交
489 490
  virtual int32_t InitializeShard() { return 0; }
  virtual int32_t SetShard(size_t shard_idx, size_t server_num) {
491 492 493 494 495 496 497 498 499 500 501 502
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
503 504
  virtual std::pair<int32_t, std::string> parse_feature(int idx,
                                                        std::string feat_str);
S
seemingwang 已提交
505

506
  virtual int32_t get_node_feat(int idx, const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
507 508 509
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
510
  virtual int32_t set_node_feat(
511
      int idx, const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
512 513 514
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
515 516
  size_t get_server_num() { return server_num; }

517
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
518 519 520
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
521
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
522
            task_pool_size_, size_limit, ttl));
523 524 525 526 527
        use_cache = true;
      }
    }
    return 0;
  }
528
#ifdef PADDLE_WITH_HETERPS
529 530 531 532 533 534 535 536 537 538 539 540 541
  // virtual int32_t start_graph_sampling() {
  //   return this->graph_sampler->start_graph_sampling();
  // }
  // virtual int32_t end_graph_sampling() {
  //   return this->graph_sampler->end_graph_sampling();
  // }
  // virtual int32_t set_graph_sample_callback(
  //     std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
  //         callback) {
  //   graph_sampler->set_graph_sample_callback(callback);
  //   return 0;
  // }
  virtual char *random_sample_neighbor_from_ssd(
542 543 544 545
      int idx, int64_t id, int sample_size,
      const std::shared_ptr<std::mt19937_64> rng, int &actual_size);
  virtual int32_t add_node_to_ssd(int type_id, int idx, int64_t src_id,
                                  char *data, int len);
546
  virtual paddle::framework::GpuPsCommGraph make_gpu_ps_graph(
547
      int idx, std::vector<int64_t> ids);
548 549
  // virtual GraphSampler *get_graph_sampler() { return graph_sampler.get(); }
  int search_level;
550
#endif
551 552 553
  virtual int32_t add_comm_edge(int idx, int64_t src_id, int64_t dst_id);
  virtual int32_t build_sampler(int idx, std::string sample_type = "random");
  std::vector<std::vector<GraphShard *>> edge_shards, feature_shards;
S
seemingwang 已提交
554
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
555
  int task_pool_size_ = 24;
S
seemingwang 已提交
556 557
  const int random_sample_nodes_ranges = 3;

558 559 560 561 562 563
  std::vector<std::vector<std::string>> feat_name;
  std::vector<std::vector<std::string>> feat_dtype;
  std::vector<std::vector<int32_t>> feat_shape;
  std::vector<std::unordered_map<std::string, int32_t>> feat_id_map;
  std::unordered_map<std::string, int> feature_to_id, edge_to_id;
  std::vector<std::string> id_to_feature, id_to_edge;
S
seemingwang 已提交
564 565 566 567
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
568
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
569
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
570 571
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
572
  bool use_cache, use_duplicate_nodes;
573 574
  int cache_size_limit;
  int cache_ttl;
575
  mutable std::mutex mutex_;
576 577 578
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
579 580 581 582
  paddle::distributed::RocksDBHandler *_db;
// std::shared_ptr<::ThreadPool> graph_sample_pool;
// std::shared_ptr<GraphSampler> graph_sampler;
// REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
583 584 585
#endif
};

586
/*
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
622
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
623 624 625
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
626
};
627
#endif
628
*/
629
}  // namespace distributed
630

631
};  // namespace paddle
632 633 634 635 636 637

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
638
    return s.idx ^ s.node_key ^ s.sample_size;
639 640 641
  }
};
}