layer_norm_op.cc 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
F
furnace 已提交
16
#include <string>
H
hong 已提交
17
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
18

19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
23 24 25 26 27 28 29 30 31 32 33 34
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
35 36 37 38 39
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "LayerNorm");
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
43 44 45 46 47 48 49
    PADDLE_ENFORCE_LT(
        begin_norm_axis, x_dim.size(),
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
            begin_norm_axis, x_dim.size()));
C
chengduoZH 已提交
50

51
    auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
C
chengduoZH 已提交
52
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
53
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
54
    if (ctx->HasInput("Scale")) {
55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
61 62

      if (ctx->IsRuntime()) {
63 64 65 66 67 68 69 70 71
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Scale")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
72
      }
C
chengduoZH 已提交
73 74
    }
    if (ctx->HasInput("Bias")) {
75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
81
      if (ctx->IsRuntime()) {
82 83 84 85 86 87 88 89 90
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Bias")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
91
      }
C
chengduoZH 已提交
92
    }
C
chengduoZH 已提交
93

C
chengduoZH 已提交
94
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
95 96
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
97 98
    ctx->ShareLoD("X", "Y");
  }
99 100 101

 protected:
  framework::OpKernelType GetExpectedKernelType(
F
furnace 已提交
102 103
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
104 105 106 107 108
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
109
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
110 111 112 113 114
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

F
furnace 已提交
115 116
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
117
  }
C
chengduoZH 已提交
118 119 120 121
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
122
  void Make() override {
Y
yuyang18 已提交
123
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
124
    AddInput("Scale",
Y
yuyang18 已提交
125
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
126 127 128
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
129
    AddInput("Bias",
Y
yuyang18 已提交
130
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
131 132 133
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
134 135 136
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
137 138 139
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
140
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
141 142
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
143 144 145 146 147
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
148
        });
C
chengduoZH 已提交
149
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
150
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
151
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
152
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
153 154 155
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
156 157 158 159
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
160
        });
161 162
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
163 164
        .SetDefault(false)
        .AsExtra();
165 166 167 168
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
169 170
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
171 172 173
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
174 175
        .SetDefault(false)
        .AsExtra();
C
chengduoZH 已提交
176 177

    AddComment(R"DOC(
Y
yuyang18 已提交
178 179 180 181 182 183 184 185
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
186 187 188 189 190 191 192 193 194 195
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
196 197 198 199 200 201
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "LayerNormGrad");
C
chengduoZH 已提交
202 203 204

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
205
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
206 207
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
208 209
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
210 211
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
212
      ctx->SetOutputDim(framework::GradVarName("Bias"),
213
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
214 215 216 217 218 219 220
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
221 222
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
                                     "Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
223 224 225 226 227 228
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
229 230
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
F
furnace 已提交
231 232 233 234 235 236 237

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
C
chengduoZH 已提交
238 239 240
  }
};

H
hong 已提交
241 242
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
243
 public:
H
hong 已提交
244
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
245 246

 protected:
247
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
248
    op->SetType("layer_norm_grad");
H
hong 已提交
249 250 251 252 253 254
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
255 256
    }

H
hong 已提交
257
    if (this->HasInput("Bias")) {
258
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
259
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
260 261
    }

H
hong 已提交
262 263 264
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
265 266 267
  }
};

268
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
269 270
                                    "Bias");

C
chengduoZH 已提交
271 272 273 274
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
275
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
H
hong 已提交
276 277
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
278
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp,
279
                  ops::LayerNormGradNoNeedBufferVarInferer);