conv_mkldnn_op.cc 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158 159 160 161 162 163
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165 166 167 168

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
169 170 171
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
172
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
173
    int groups = ctx.Attr<int>("groups");
174
    bool is_conv3d = strides.size() == 3U;
175

176
    PADDLE_ENFORCE(
177 178 179 180
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
181 182 183 184 185
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

186 187
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
188
    int g = std::max(groups, 1);
189
    GetWeightsTz(weights_tz, g, is_conv3d);
190
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
191

192
    // Get unique name for storing MKLDNN primitives
193
    const std::string key = platform::CreateKey(
194
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
195 196 197

    std::vector<primitive> pipeline;

198
    auto src_format = input->format();
199
    MKLDNNMemoryFormat weights_format =
200 201 202 203 204 205
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
206 207 208 209 210

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
211 212 213 214
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

215
    weights_format = MKLDNNMemoryFormat::any;
216
    // Check the format for user's special output
217
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
218 219 220 221
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
222 223
    }

224
    auto src_md = platform::MKLDNNMemDesc(
225
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
226
    auto weights_md = platform::MKLDNNMemDesc(
227
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
228
    std::vector<int> bias_tz;
229
    auto dst_md = platform::MKLDNNMemDesc(
230
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
231

232 233
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

234
    // create a conv primitive descriptor and save it for usage in backward
235
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
236 237
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
238
    if (bias) {
239
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
240
      auto bias_md = platform::MKLDNNMemDesc(
241
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
242
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
243
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
244
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
245
          fwd_prop_kind);
246
    } else {
247 248
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
249 250
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
251
    }
252

253
    // create mkldnn memory from input tensors (data/weights)
254 255
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
256
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
257
        user_weights_md, to_void_cast<T>(filter_data));
258

259 260 261 262 263
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
264

265
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
266

267
    if (fuse_residual_conn) {
268 269
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
270

271 272
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
273 274 275 276
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
277

278
      if (residual_param->format() != handler.GetDstFormat()) {
279 280
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
281
        auto residual_data_tz =
282
            paddle::framework::vectorize<int>(residual_param->dims());
283 284 285 286 287
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
288
        user_residual_memory_p = handler.AcquireResidualDataMemory(
289
            user_residual_md, to_void_cast<T>(residual_param_data));
290 291 292

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
293 294
      } else {
        output->ShareDataWith(*residual_param);
295 296 297
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
298
      }
299
    } else {
300 301
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
302 303
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
304
    }
305 306

    // create convolution op primitive
307
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
308
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
309 310 311
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
312
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
313
      user_bias_memory_p =
314 315
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

316
      bias_memory_p =
317 318 319 320 321 322 323
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
324 325

    // push primitive to stream and wait until it's executed
326
    pipeline.push_back(*conv_p);
327 328
    stream(stream::kind::eager).submit(pipeline).wait();

329 330
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
331
  }
332
  template <typename T_out>
333 334 335 336 337 338 339 340 341 342
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* output = ctx.Output<Tensor>("Output");

343 344 345 346 347 348 349 350 351 352 353 354
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

355
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
X
xiaolil1 已提交
356
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
357 358
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
359

360 361
    const T* input_data = input->data<T>();

362
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
363

X
xiaolil1 已提交
364 365
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
366

L
lidanqing 已提交
367
    std::string key = platform::CreateKey(
368
        src_tz, src_dt, ctx.op().Input("Input") + ctx.op().Input("Filter"));
369

370 371 372
    const std::string key_conv_pd = key + "@conv_pd";

    bool need_s8_to_u8 = false;
373 374 375
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
376
    std::shared_ptr<mkldnn::memory> dst_memory_p;
377
    std::vector<primitive> pipeline;
378
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
379 380 381 382 383 384 385 386 387
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
388
    }
389

390 391 392 393 394 395 396 397 398 399 400
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
    auto user_src_key = key + key_tid + "@user_src_mem_p";
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

    if (conv_p == nullptr || !is_test) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      float fuse_beta = ctx.Attr<float>("fuse_beta");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

      auto* filter = ctx.Input<Tensor>("Filter");

      PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Filter tensor");
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Filter tensor");

      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

      PADDLE_ENFORCE_EQ(
          !fuse_residual_conn || !force_fp32_output, true,
          "residual fusion does not support force output with fp32");

      auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;

      if (bias) {
        PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                          "Wrong layout set for Bias tensor");
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                          "Wrong format set for Bias tensor");

        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          "Bias must only have 1 dimension, i.e. X");
      }

      std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");

      bool is_conv3d = strides.size() == 3U;

      PADDLE_ENFORCE_NE(is_conv3d, true,
                        "int8 does not support conv3d currently");

      int groups = ctx.Attr<int>("groups");
      auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
      int g = std::max(groups, 1);

      GetWeightsTz(weights_tz, g, is_conv3d);
      auto dst_tz = paddle::framework::vectorize<int>(output->dims());

      PADDLE_ENFORCE_EQ(
          is_conv3d
              ? dilations.size() == 3 && dilations[0] == 1 &&
                    dilations[1] == 1 && dilations[2] == 1
              : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
          true, "dilation in convolution is not implemented yet");

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529
      if (bias) {
        bias_tz = paddle::framework::vectorize<int>(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize<int>(residual_param->dims());
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
X
xiaolil1 已提交
616

617 618 619 620 621 622 623 624 625
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
626

627 628
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
L
lidanqing 已提交
629
        output->ShareDataWith(*residual_param);
630 631 632
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
633
      }
634
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
635

636 637 638
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
L
lidanqing 已提交
639

640 641 642 643 644 645 646
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }
      pipeline.push_back(*conv_p);
    }
647 648
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();
649
    if (need_s8_to_u8) {
X
xiaolil1 已提交
650 651
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
652 653 654
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
655 656 657
};

template <typename T>
658
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
659 660 661 662 663
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

664 665
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
666 667 668 669 670 671 672 673 674
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

675 676 677 678
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
679

680 681 682 683 684 685 686 687 688 689 690 691
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
692 693
        "is_test attribute should be set to False in training phase.");

694 695 696 697
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
698 699
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
700

701
    bool is_conv3d = strides.size() == 3U;
702 703 704 705 706 707
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

708 709
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
710
    int g = std::max(groups, 1);
711
    GetWeightsTz(weights_tz, g, is_conv3d);
712
    auto dst_tz = paddle::framework::vectorize<int>(output_grad->dims());
713
    auto src_format = input->format();
714
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
715
        GetWeightsFormat(filter->format(), g, is_conv3d);
716

717
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
718
    // as well as attributes of primitive to be created
719
    // This name will be used as key when saving info into device context
720
    const std::string key = platform::CreateKey(
721
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
722 723

    const std::string key_conv_pd = key + "@conv_pd";
724
    std::vector<primitive> pipeline;
725

726 727
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
728
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
729
    auto user_weights_md = platform::MKLDNNMemDesc(
730
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
731 732
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
733 734 735 736 737

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
738 739 740 741
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

742
    weights_format = MKLDNNMemoryFormat::any;
743
    // Check the format for user's special output
744
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
745 746 747 748
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
749 750
    }

751
    auto src_md = platform::MKLDNNMemDesc(
752
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
753
    auto diff_src_md = platform::MKLDNNMemDesc(
754
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
755
    auto weights_md = platform::MKLDNNMemDesc(
756
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
757
    auto diff_weights_md = platform::MKLDNNMemDesc(
758
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
759
    auto diff_dst_md = platform::MKLDNNMemDesc(
760
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
761

762
    // Retrieve conv_pd from device context
763 764 765
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
766 767
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
                      "Fail to find conv_pd in device context");
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
785 786 787
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
788 789 790 791 792 793 794 795 796

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

797 798
    // create backward conv primitive for weights
    if (filter_grad) {
799 800
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
801

802 803 804 805
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

806
      const size_t size = handler.GetDiffWeightsMemorySize();
807
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
808

809 810 811 812 813 814 815 816 817
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
818

819 820
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
821 822 823
    }

    if (input_grad) {
824 825 826 827 828 829 830
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

831
      const size_t size = handler.GetDiffSourceMemorySize();
832
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
833

834 835 836 837 838 839 840
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
841

842 843
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
844
    }
845
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
846
  }
847
};
848

849 850 851 852 853
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
854 855 856
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
857
                                    ops::ConvMKLDNNOpKernel<float, float>);
858 859 860

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
861
                                    ops::kConvMKLDNNINT8,
862
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
863 864 865

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
866
                                    ops::kConvMKLDNNINT8,
867
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
868 869 870 871 872

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
873 874 875 876

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
877
                                    ops::ConvMKLDNNOpKernel<float, float>);
878 879 880 881 882

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);