conv_mkldnn_op.cc 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77 78
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
  if (is_int8) {
79 80 81
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
82 83 84 85 86 87 88 89 90 91 92
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158 159 160 161 162 163
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165 166 167 168

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
169 170 171
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
172
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
173
    int groups = ctx.Attr<int>("groups");
174
    bool is_conv3d = strides.size() == 3U;
175

176
    PADDLE_ENFORCE(
177 178 179 180
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
181 182 183 184 185 186 187 188
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
189
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
190
    GetWeightsTz(weights_tz, g, is_conv3d);
191 192
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

193
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
194
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
195
        src_tz, weights_tz, fuse_activation, strides, paddings, dilations,
196
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
197 198 199

    std::vector<primitive> pipeline;

200
    auto src_format = input->format();
201
    MKLDNNMemoryFormat weights_format =
202 203 204 205 206 207
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
208 209 210 211 212

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
213 214 215 216
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

217
    weights_format = MKLDNNMemoryFormat::any;
218
    // Check the format for user's special output
219
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
220 221 222 223
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
224 225
    }

226
    auto src_md = platform::MKLDNNMemDesc(
227
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
228
    auto weights_md = platform::MKLDNNMemDesc(
229
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
230
    std::vector<int> bias_tz;
231
    auto dst_md = platform::MKLDNNMemDesc(
232
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
233

234 235
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

236
    // create a conv primitive descriptor and save it for usage in backward
237
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
238 239
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
240 241 242
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
243
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
244
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
245
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
246
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
247
          fwd_prop_kind);
248
    } else {
249 250
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
251 252
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
253
    }
254

255
    // create mkldnn memory from input tensors (data/weights)
256 257
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
258
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
259
        user_weights_md, to_void_cast<T>(filter_data));
260

261 262 263 264 265
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
266

267
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
268

269
    if (fuse_residual_conn) {
270 271
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
272

273 274 275 276 277 278
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
279

280
      if (residual_param->format() != handler.GetDstFormat()) {
281 282
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
283 284 285 286 287 288 289
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
290
        user_residual_memory_p = handler.AcquireResidualDataMemory(
291
            user_residual_md, to_void_cast<T>(residual_param_data));
292 293 294

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
295 296
      } else {
        output->ShareDataWith(*residual_param);
297 298 299
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
300
      }
301
    } else {
302 303
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
304 305
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
306
    }
307 308

    // create convolution op primitive
309
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
310
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
311 312 313
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
314
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
315
      user_bias_memory_p =
316 317
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

318
      bias_memory_p =
319 320 321 322 323 324 325
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
326 327

    // push primitive to stream and wait until it's executed
328
    pipeline.push_back(*conv_p);
329 330
    stream(stream::kind::eager).submit(pipeline).wait();

331 332
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
333
  }
334
  template <typename T_out>
335 336 337 338 339 340 341 342 343 344 345 346
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

371
    if (bias) {
372 373 374 375 376 377 378
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
379 380 381 382 383 384
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
385 386 387
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
X
xiaolil1 已提交
388
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
389
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
390 391
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
392 393 394 395

    PADDLE_ENFORCE(!fuse_residual_conn || !force_fp32_output,
                   "residual fusion does not support force output with fp32");

396 397 398 399 400 401 402
    bool is_conv3d = strides.size() == 3U;
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
403

404 405 406 407 408 409 410 411
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
412

413 414 415
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
416 417
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
418

419 420 421 422 423
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
424
        input->format(), fuse_activation, fuse_residual_conn,
425
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
426

427 428
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
429
    bool need_s8_to_u8 = false;
430 431 432 433
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
    std::shared_ptr<mkldnn::memory> dst_memory_p;
434
    std::vector<primitive> pipeline;
435 436
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::MKLDNNHandler::ThreadIDasStr();
    }

    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
    auto user_src_key = key + key_tid + "@user_src_mem_p";
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";
X
xiaolil1 已提交
453

454 455
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
456

457 458 459
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
460
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
461 462 463
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
464 465
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
482 483 484
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
485 486 487 488 489 490
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
491
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
507 508
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
X
xiaolil1 已提交
509

510 511
      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
512
      // create a conv primitive descriptor and save it for usage in backward
513 514 515
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;

516 517
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
518
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
519
                                               MKLDNNMemoryFormat::x);
520 521
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
522 523
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
524 525 526
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
527 528
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
529
      }
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
548 549 550 551 552 553 554 555 556 557 558 559
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
560 561 562
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
X
xiaolil1 已提交
563 564
        } else {
          output->ShareDataWith(*residual_param);
565
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
X
xiaolil1 已提交
566
        }
567 568 569
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
570
      } else {
571
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
572 573 574 575 576
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
577
        const K* bias_data = bias->data<K>();
578
        auto user_bias_md = platform::MKLDNNMemDesc(
579
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
580
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
581
            user_bias_md, to_void_cast<K>(bias_data));
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
626 627 628 629

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        output->ShareDataWith(*residual_param);
630 631 632
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
633
      }
634
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
X
xiaolil1 已提交
635

636 637 638
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
639 640 641 642 643 644

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }
645 646 647 648
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
649 650 651
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
652 653 654
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
655 656 657
};

template <typename T>
658
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
659 660 661 662 663
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

664 665
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
666 667 668 669 670 671 672 673 674
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

675 676 677 678
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
679

680 681 682 683 684 685 686 687 688 689 690 691
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
692 693
        "is_test attribute should be set to False in training phase.");

694 695 696 697
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
698 699
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
700

701
    bool is_conv3d = strides.size() == 3U;
702 703 704 705 706 707 708 709 710
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
711
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
712
    GetWeightsTz(weights_tz, g, is_conv3d);
713 714
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
715
    auto src_format = input->format();
716
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
717
        GetWeightsFormat(filter->format(), g, is_conv3d);
718

719
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
720
    // as well as attributes of primitive to be created
721
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
722
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
723 724
        src_tz, weights_tz, "", strides, paddings, dilations, groups,
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
725 726

    const std::string key_conv_pd = key + "@conv_pd";
727
    std::vector<primitive> pipeline;
728

729 730
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
731
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
732
    auto user_weights_md = platform::MKLDNNMemDesc(
733
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
734 735
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
736 737 738 739 740

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
741 742 743 744
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

745
    weights_format = MKLDNNMemoryFormat::any;
746
    // Check the format for user's special output
747
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
748 749 750 751
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
752 753
    }

754
    auto src_md = platform::MKLDNNMemDesc(
755
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
756
    auto diff_src_md = platform::MKLDNNMemDesc(
757
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
758
    auto weights_md = platform::MKLDNNMemDesc(
759
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
760
    auto diff_weights_md = platform::MKLDNNMemDesc(
761
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
762
    auto diff_dst_md = platform::MKLDNNMemDesc(
763
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
764

765
    // Retrieve conv_pd from device context
766 767 768
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
769 770 771
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
788 789 790
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
791 792 793 794 795 796 797 798 799

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

800 801
    // create backward conv primitive for weights
    if (filter_grad) {
802 803
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
804

805 806 807 808
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

809
      const size_t size = handler.GetDiffWeightsMemorySize();
810
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
811

812 813 814 815 816 817 818 819 820
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
821

822 823
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
824 825 826
    }

    if (input_grad) {
827 828 829 830 831 832 833
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

834
      const size_t size = handler.GetDiffSourceMemorySize();
835
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
836

837 838 839 840 841 842 843
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
844

845 846
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
847
    }
848
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
849
  }
850 851 852 853 854 855 856
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
857 858 859
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
860 861 862 863
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
864
                                    ops::kConvMKLDNNINT8,
865 866 867 868
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
869
                                    ops::kConvMKLDNNINT8,
870
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
871 872 873 874 875

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
876 877 878 879

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
880
                                    ops::ConvMKLDNNOpKernel<float, float>);
881 882 883 884 885

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);