test_seq_conv.py 7.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18 19
import unittest
import numpy as np
import random
20
from op_test import OpTest
C
chengduoZH 已提交
21 22


23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def seqconv(x,
            lod,
            filter,
            context_length,
            context_start,
            padding_trainable=False,
            padding_data=None):
    [T, M] = x.shape
    col = np.zeros((T, context_length * M)).astype('float32')
    offset = [0]
    for seq_len in lod[0]:
        offset.append(offset[-1] + seq_len)
    begin_pad = np.max([0, -context_start])
    for i in range(len(offset) - 1):
        for j in range(context_length):
            in_begin = offset[i] + context_start + j
            in_end = offset[i + 1] + context_start + j
            out_begin = offset[i]
            out_end = offset[i + 1]
            if in_begin < offset[i]:
                pad_size = np.min(
                    [offset[i] - in_begin, offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[j:j + pad_size, :]
                    col[offset[i]:offset[i] + pad_size, j * M:(j + 1) *
                        M] = sub_w
                out_begin = offset[i] + pad_size
                in_begin = offset[i]

            if in_end > offset[i + 1]:
                pad_size = np.min(
                    [in_end - offset[i + 1], offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[begin_pad + context_start + j -
                                         pad_size:begin_pad + context_start +
                                         j, :]
                    col[offset[i + 1] - pad_size:offset[i + 1], j * M:(j + 1) *
                        M] = sub_w
                in_end = offset[i + 1]
                out_end = offset[i + 1] - pad_size
            if in_end <= in_begin:
                continue
            in_sub = x[in_begin:in_end, :]
            col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
    return np.dot(col, filter)


C
chengduoZH 已提交
70 71 72 73 74 75 76 77
class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
78
            print("If context_start is 0 " \
C
chengduoZH 已提交
79
                  "and context_length is 1," \
80
                  " padding_trainable should be false.")
C
chengduoZH 已提交
81 82 83 84 85
            return

        # one level, batch size
        x = np.random.uniform(0.1, 1, [self.input_size[0],
                                       self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
86 87 88
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
89 90 91 92 93 94 95

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
96 97
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
98
            'Filter': w,
C
chengduoZH 已提交
99
        }
C
chengduoZH 已提交
100 101 102 103 104 105 106 107 108 109
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
110
        self.attrs = {
C
chengduoZH 已提交
111 112 113 114
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
115
        }
116 117
        out = seqconv(x, self.lod, w, self.context_length, self.context_start,
                      self.padding_trainable, self.pad_data)
C
chengduoZH 已提交
118 119 120 121 122 123 124 125
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
126
                set(self.inputs_val), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
127 128 129 130 131 132

    def test_check_grad_input(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
133
            no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
            self.check_grad(
                ['PaddingData'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X', 'Filter']))

    def test_check_grad_Filter(self):
        self.check_grad(
            ['Filter'],
            'Out',
            max_relative_error=0.05,
C
chengduoZH 已提交
148
            no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
149

C
chengduoZH 已提交
150
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
151 152 153 154 155 156
        if self.padding_trainable:
            self.check_grad(
                ['X', 'Filter'],
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
157 158 159 160

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
161
                self.inputs_val_no_f,
C
chengduoZH 已提交
162 163 164 165 166 167 168
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['Filter']))

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
            self.check_grad(
C
chengduoZH 已提交
169
                self.inputs_val_no_x,
C
chengduoZH 已提交
170 171 172 173
                'Out',
                max_relative_error=0.05,
                no_grad_set=set(['X']))

C
chengduoZH 已提交
174 175 176 177 178 179 180 181
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
182 183 184 185 186
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
187
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
188 189 190 191 192 193 194 195 196 197 198


class TestSeqProjectCase1(TestSeqProject):
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
199 200 201 202 203
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
204
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
205 206 207 208 209 210 211 212 213 214 215


class TestSeqProjectCase2(TestSeqProject):
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
216
        idx = list(range(self.input_size[0]))
C
chengduoZH 已提交
217
        del idx[0]
218 219 220 221 222 223
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
224
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
225 226 227 228


if __name__ == '__main__':
    unittest.main()