test_grid_sampler_op.py 17.7 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
D
dengkaipeng 已提交
16 17
import unittest
import numpy as np
18
import paddle.fluid.core as core
19
from op_test import OpTest, skip_check_grad_ci
20

21
paddle.enable_static()
D
dengkaipeng 已提交
22 23


24 25 26 27
def AffineGrid(theta, grid_shape):
    n = grid_shape[0]
    h = grid_shape[1]
    w = grid_shape[2]
28 29 30 31 32 33
    h_idx = np.repeat(np.linspace(-1, 1, h)[np.newaxis, :], w,
                      axis=0).T[:, :, np.newaxis]
    w_idx = np.repeat(np.linspace(-1, 1, w)[np.newaxis, :], h,
                      axis=0)[:, :, np.newaxis]
    grid = np.concatenate([w_idx, h_idx, np.ones([h, w, 1])],
                          axis=2)  # h * w * 3
34
    grid = np.repeat(grid[np.newaxis, :], n, axis=0)  # n * h * w *3
D
dengkaipeng 已提交
35 36 37 38 39 40

    ret = np.zeros([n, h * w, 2])
    theta = theta.transpose([0, 2, 1])
    for i in range(len(theta)):
        ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])

41
    return ret.reshape([n, h, w, 2]).astype("float64")
D
dengkaipeng 已提交
42

43

D
dengkaipeng 已提交
44 45 46
def getGridPointValue(data, x, y):
    data_shape = data.shape
    N = data_shape[0]
47 48 49 50 51 52 53 54
    C = data_shape[1]
    in_H = data_shape[2]
    in_W = data_shape[3]
    out_H = x.shape[1]
    out_W = x.shape[2]

    #out = np.zeros(data_shape, dtype='float64')
    out = np.zeros([N, C, out_H, out_W], dtype='float64')
D
dengkaipeng 已提交
55
    for i in range(N):
56 57 58 59
        for j in range(out_H):
            for k in range(out_W):
                if y[i, j, k] < 0 or y[i, j, k] > in_H - 1 or x[
                        i, j, k] < 0 or x[i, j, k] > in_W - 1:
D
dengkaipeng 已提交
60 61 62 63 64 65
                    out[i, :, j, k] = 0
                else:
                    out[i, :, j, k] = data[i, :, y[i, j, k], x[i, j, k]]

    return out

66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
def AffineGrid3D(theta, grid_shape):
    n = grid_shape[0]
    d = grid_shape[1]
    h = grid_shape[2]
    w = grid_shape[3]
    d_idx = np.repeat(np.repeat(np.linspace(-1, 1, d)[:, np.newaxis,
                                                      np.newaxis],
                                h,
                                axis=1),
                      w,
                      axis=2)[:, :, :, np.newaxis]
    h_idx = np.repeat(np.repeat(np.linspace(-1, 1, h)[np.newaxis, :,
                                                      np.newaxis],
                                w,
                                axis=2),
                      d,
                      axis=0)[:, :, :, np.newaxis]
    w_idx = np.repeat(np.repeat(np.linspace(-1, 1, w)[np.newaxis,
                                                      np.newaxis, :],
                                h,
                                axis=1),
                      d,
                      axis=0)[:, :, :, np.newaxis]
    grid = np.concatenate(
        [w_idx, h_idx, d_idx, np.ones([d, h, w, 1])], axis=3)  # d * h * w * 4
    grid = np.repeat(grid[np.newaxis, :], n, axis=0)  # n * d * h * w *4
    ret = np.zeros([n, d * h * w, 3])
    theta = theta.transpose([0, 2, 1])
    for i in range(len(theta)):
        ret[i] = np.dot(grid[i].reshape([d * h * w, 4]), theta[i])

    return ret.reshape([n, d, h, w, 3]).astype("float64")


def getGridPointValue3D(data, x, y, z):
    data_shape = data.shape
    N = data_shape[0]
    C = data_shape[1]
    in_D = data_shape[2]
    in_H = data_shape[3]
    in_W = data_shape[4]
    out_D = x.shape[1]
    out_H = x.shape[2]
    out_W = x.shape[3]

    out = np.zeros([N, C, out_D, out_H, out_W], dtype='float64')
    for i in range(N):
        for j in range(out_D):
            for k in range(out_H):
                for l in range(out_W):
                    if y[i, j, k, l] < 0 or y[i, j, k, l] > in_H - 1 or x[
                            i, j, k, l] < 0 or x[i, j, k, l] > in_W - 1 or z[
                                i, j, k, l] < 0 or z[i, j, k, l] > in_D - 1:
                        out[i, :, j, k, l] = 0
                    else:
                        out[i, :, j, k, l] = data[i, :, z[i, j, k, l],
                                                  y[i, j, k, l], x[i, j, k, l]]

    return out


128 129
def clip(x, min_n, max_n):
    return np.maximum(np.minimum(x, max_n), min_n)
D
dengkaipeng 已提交
130 131


132 133 134 135
def unnormalizeAndClip(grid_slice, max_val, align_corners, padding_mode):
    if align_corners:
        grid_slice = 0.5 * ((grid_slice.astype('float64') + 1.0) * max_val)
    else:
136 137
        grid_slice = 0.5 * ((grid_slice.astype('float64') + 1.0) *
                            (max_val + 1)) - 0.5
138 139 140

    if padding_mode == "border":
        grid_slice = clip(grid_slice, 0, max_val)
141
    elif padding_mode == "reflection":
142 143 144 145 146
        double_range = 2 * max_val if align_corners else (max_val + 1) * 2
        grid_abs = np.abs(grid_slice) if align_corners else np.abs(grid_slice +
                                                                   0.5)
        extra = grid_abs - np.floor(grid_abs / double_range) * double_range
        grid_slice = np.minimum(extra, double_range - extra)
147 148
        grid_slice = grid_slice if align_corners else clip(
            grid_slice - 0.5, 0, max_val)
149
    return grid_slice
D
dengkaipeng 已提交
150 151


152 153 154 155 156 157 158 159 160 161
def GridSampler(data,
                grid,
                align_corners=True,
                mode="bilinear",
                padding_mode="zeros"):
    dims = data.shape
    N = dims[0]
    in_C = dims[1]
    in_H = dims[2]
    in_W = dims[3]
D
dengkaipeng 已提交
162

163 164
    out_H = grid.shape[1]
    out_W = grid.shape[2]
D
dengkaipeng 已提交
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    x = grid[:, :, :, 0]
    y = grid[:, :, :, 1]
    y_max = in_H - 1
    x_max = in_W - 1

    x = unnormalizeAndClip(x, x_max, align_corners, padding_mode)
    y = unnormalizeAndClip(y, y_max, align_corners, padding_mode)

    if mode == "bilinear":
        x0 = np.floor(x).astype('int32')
        x1 = x0 + 1
        y0 = np.floor(y).astype('int32')
        y1 = y0 + 1

        wa = np.tile(((x1 - x) * (y1 - y)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wb = np.tile(((x1 - x) * (y - y0)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wc = np.tile(((x - x0) * (y1 - y)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wd = np.tile(((x - x0) * (y - y0)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))

        va = getGridPointValue(data, x0, y0)
        vb = getGridPointValue(data, x0, y1)
        vc = getGridPointValue(data, x1, y0)
        vd = getGridPointValue(data, x1, y1)

        out = (wa * va + wb * vb + wc * vc + wd * vd).astype('float64')
    elif mode == "nearest":
        x = np.round(x).astype('int32')
        y = np.round(y).astype('int32')
        out = getGridPointValue(data, x, y)
D
dengkaipeng 已提交
199 200
    return out

201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def GridSampler3D(data,
                  grid,
                  align_corners=True,
                  mode="bilinear",
                  padding_mode="zeros"):
    dims = data.shape
    N = dims[0]
    in_C = dims[1]
    in_D = dims[2]
    in_H = dims[3]
    in_W = dims[4]

    out_D = grid.shape[1]
    out_H = grid.shape[2]
    out_W = grid.shape[3]

    x = grid[:, :, :, :, 0]
    y = grid[:, :, :, :, 1]
    z = grid[:, :, :, :, 2]

    z_max = in_D - 1
    y_max = in_H - 1
    x_max = in_W - 1

    x = unnormalizeAndClip(x, x_max, align_corners, padding_mode)
    y = unnormalizeAndClip(y, y_max, align_corners, padding_mode)
    z = unnormalizeAndClip(z, z_max, align_corners, padding_mode)

    if mode == "bilinear":
        x0 = np.floor(x).astype('int32')
        x1 = x0 + 1
        y0 = np.floor(y).astype('int32')
        y1 = y0 + 1
        z0 = np.floor(z).astype('int32')
        z1 = z0 + 1

        w_tnw = np.tile(((x1 - x) * (y1 - y) * (z1 - z)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_tne = np.tile(((x - x0) * (y1 - y) * (z1 - z)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_tsw = np.tile(((x1 - x) * (y - y0) * (z1 - z)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_tse = np.tile(((x - x0) * (y - y0) * (z1 - z)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_bnw = np.tile(((x1 - x) * (y1 - y) * (z - z0)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_bne = np.tile(((x - x0) * (y1 - y) * (z - z0)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_bsw = np.tile(((x1 - x) * (y - y0) * (z - z0)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))
        w_bse = np.tile(((x - x0) * (y - y0) * (z - z0)).reshape(
            (N, 1, out_D, out_H, out_W)), (1, in_C, 1, 1, 1))

        v_tnw = getGridPointValue3D(data, x0, y0, z0)
        v_tne = getGridPointValue3D(data, x1, y0, z0)
        v_tsw = getGridPointValue3D(data, x0, y1, z0)
        v_tse = getGridPointValue3D(data, x1, y1, z0)
        v_bnw = getGridPointValue3D(data, x0, y0, z1)
        v_bne = getGridPointValue3D(data, x1, y0, z1)
        v_bsw = getGridPointValue3D(data, x0, y1, z1)
        v_bse = getGridPointValue3D(data, x1, y1, z1)

        out = (w_tnw * v_tnw + w_tne * v_tne + w_tsw * v_tsw + w_tse * v_tse +
               w_bnw * v_bnw + w_bne * v_bne + w_bsw * v_bsw +
               w_bse * v_bse).astype('float64')

    elif mode == "nearest":
        x = np.round(x).astype('int32')
        y = np.round(y).astype('int32')
        z = np.round(z).astype('int32')
        out = getGridPointValue3D(data, x, y, z)
    return out


D
dengkaipeng 已提交
276
class TestGridSamplerOp(OpTest):
277

D
dengkaipeng 已提交
278
    def setUp(self):
279 280
        self.use_cudnn = False
        self.numeric_grad_delta = 0.0001
D
dengkaipeng 已提交
281
        self.op_type = 'grid_sampler'
W
Wang Bojun 已提交
282
        self.python_api = paddle.nn.functional.grid_sample
283 284 285 286
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
        self.initTestCase()
287 288
        x = np.random.randint(0, 255, self.x_shape).astype('float64')
        theta = np.zeros(self.theta_shape).astype('float64')
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        if len(self.grid_shape) == 4:
            for i in range(self.theta_shape[0]):
                for j in range(2):
                    for k in range(3):
                        theta[i, j, k] = np.random.rand(1)[0]
            grid = AffineGrid(theta, self.grid_shape)
            self.inputs = {'X': x, 'Grid': grid}
            self.attrs = {
                'use_cudnn': self.use_cudnn,
                "align_corners": self.align_corners,
                "padding_mode": self.padding_mode,
                "mode": self.mode
            }
            self.outputs = {
                'Output':
                GridSampler(x, grid, self.align_corners, self.mode,
                            self.padding_mode)
            }
        else:
            for i in range(self.theta_shape[0]):
                for j in range(3):
                    for k in range(4):
                        theta[i, j, k] = np.random.rand(1)[0]
            grid = AffineGrid3D(theta, self.grid_shape)
            self.inputs = {'X': x, 'Grid': grid}
            self.attrs = {
                'use_cudnn': self.use_cudnn,
                "align_corners": self.align_corners,
                "padding_mode": self.padding_mode,
                "mode": self.mode
            }
            self.outputs = {
                'Output':
                GridSampler3D(x, grid, self.align_corners, self.mode,
                              self.padding_mode)
            }

D
dengkaipeng 已提交
327
    def test_check_output(self):
328
        self.check_output(check_eager=True)
D
dengkaipeng 已提交
329 330

    def test_check_grad_normal(self):
331 332 333 334 335
        self.check_grad(['X', 'Grid'],
                        'Output',
                        max_relative_error=0.01,
                        numeric_grad_delta=self.numeric_grad_delta,
                        check_eager=True)
336 337 338 339 340 341 342 343

    def initTestCase(self):
        self.x_shape = (2, 3, 8, 8)
        self.grid_shape = (2, 7, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
344
        self.use_cudnn = False if core.is_compiled_with_rocm() else True
345 346 347


class Case1(TestGridSamplerOp):
348

349 350 351 352 353 354 355 356 357
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "zeros"
        self.mode = "bilinear"


J
Jiangxinz 已提交
358
class Case1_(TestGridSamplerOp):
359

360 361 362 363 364 365 366 367 368 369
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "border"
        self.mode = "bilinear"


class Case2(TestGridSamplerOp):
370

371 372 373 374 375
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
376
        self.padding_mode = "reflection"
377 378 379 380
        self.mode = "bilinear"


class Case3(TestGridSamplerOp):
381

382 383 384 385 386
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
387
        self.padding_mode = "reflection"
388 389
        self.mode = "bilinear"

D
dengkaipeng 已提交
390

391
class Case4(TestGridSamplerOp):
392

D
dengkaipeng 已提交
393
    def initTestCase(self):
394 395
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
D
dengkaipeng 已提交
396
        self.theta_shape = (2, 2, 3)
397
        self.align_corners = False
398
        self.padding_mode = "reflection"
399 400
        self.mode = "nearest"
        self.numeric_grad_delta = 0.0001
D
dengkaipeng 已提交
401

402

403 404 405
@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class LargeInputCase(TestGridSamplerOp):
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    def get_places(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 128, 128)
        self.grid_shape = (2, 130, 130, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "reflection"
        self.mode = "bilinear"

    def test_check_grad_normal(self):
        pass


@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class Case5(LargeInputCase):
429

430 431 432 433 434 435 436 437 438 439 440
    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 128, 128)
        self.grid_shape = (2, 130, 130, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
        self.use_cudnn = False if core.is_compiled_with_rocm() else True


441 442 443 444 445 446 447 448 449
class Case6(TestGridSamplerOp):

    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6, 7)
        self.grid_shape = (2, 8, 9, 10, 3)
        self.theta_shape = (2, 3, 4)
        self.align_corners = False
        self.padding_mode = "zeros"
        self.mode = "bilinear"
450
        self.numeric_grad_delta = 0.000001
451 452 453 454 455


class Case6_(TestGridSamplerOp):

    def initTestCase(self):
456 457
        self.x_shape = (2, 3, 4, 5, 6)
        self.grid_shape = (2, 7, 8, 9, 3)
458 459 460 461
        self.theta_shape = (2, 3, 4)
        self.align_corners = False
        self.padding_mode = "border"
        self.mode = "bilinear"
462
        self.numeric_grad_delta = 0.000001
463 464 465 466 467


class Case7(TestGridSamplerOp):

    def initTestCase(self):
468 469
        self.x_shape = (2, 3, 4, 5, 6)
        self.grid_shape = (2, 7, 8, 9, 3)
470 471 472 473
        self.theta_shape = (2, 3, 4)
        self.align_corners = False
        self.padding_mode = "reflection"
        self.mode = "bilinear"
474
        self.numeric_grad_delta = 0.000001
475 476 477 478 479


class Case8(TestGridSamplerOp):

    def initTestCase(self):
480 481
        self.x_shape = (2, 3, 4, 5, 6)
        self.grid_shape = (2, 7, 8, 9, 3)
482 483 484 485
        self.theta_shape = (2, 3, 4)
        self.align_corners = True
        self.padding_mode = "reflection"
        self.mode = "bilinear"
486
        self.numeric_grad_delta = 0.000001
487 488 489 490 491


class Case9(TestGridSamplerOp):

    def initTestCase(self):
492 493
        self.x_shape = (2, 3, 4, 5, 6)
        self.grid_shape = (2, 7, 8, 9, 3)
494 495 496 497
        self.theta_shape = (2, 3, 4)
        self.align_corners = False
        self.padding_mode = "reflection"
        self.mode = "nearest"
498
        self.numeric_grad_delta = 0.000001
499 500 501 502 503 504


@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class LargeInput3DCase(TestGridSamplerOp):

505 506 507 508 509 510
    def get_places(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

511 512 513 514 515 516 517 518
    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 24, 24, 12)
        self.grid_shape = (2, 25, 25, 12, 3)
        self.theta_shape = (2, 3, 4)
        self.align_corners = False
        self.padding_mode = "reflection"
        self.mode = "bilinear"
519
        self.numeric_grad_delta = 0.000001
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        self.use_cudnn = False

    def test_check_grad_normal(self):
        pass


@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class Case10(LargeInput3DCase):

    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 24, 24, 12)
        self.grid_shape = (2, 25, 25, 12, 3)
        self.theta_shape = (2, 3, 4)
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
538
        self.numeric_grad_delta = 0.000001
539 540


D
dengkaipeng 已提交
541 542
if __name__ == "__main__":
    unittest.main()