test_grid_sampler_op.py 9.0 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
D
dengkaipeng 已提交
16 17
import unittest
import numpy as np
18
import paddle.fluid.core as core
19
from op_test import OpTest, skip_check_grad_ci
20

21
paddle.enable_static()
D
dengkaipeng 已提交
22 23


24 25 26 27
def AffineGrid(theta, grid_shape):
    n = grid_shape[0]
    h = grid_shape[1]
    w = grid_shape[2]
28 29 30 31 32 33
    h_idx = np.repeat(np.linspace(-1, 1, h)[np.newaxis, :], w,
                      axis=0).T[:, :, np.newaxis]
    w_idx = np.repeat(np.linspace(-1, 1, w)[np.newaxis, :], h,
                      axis=0)[:, :, np.newaxis]
    grid = np.concatenate([w_idx, h_idx, np.ones([h, w, 1])],
                          axis=2)  # h * w * 3
34
    grid = np.repeat(grid[np.newaxis, :], n, axis=0)  # n * h * w *3
D
dengkaipeng 已提交
35 36 37 38 39 40

    ret = np.zeros([n, h * w, 2])
    theta = theta.transpose([0, 2, 1])
    for i in range(len(theta)):
        ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])

41
    return ret.reshape([n, h, w, 2]).astype("float64")
D
dengkaipeng 已提交
42

43

D
dengkaipeng 已提交
44 45 46
def getGridPointValue(data, x, y):
    data_shape = data.shape
    N = data_shape[0]
47 48 49 50 51 52 53 54
    C = data_shape[1]
    in_H = data_shape[2]
    in_W = data_shape[3]
    out_H = x.shape[1]
    out_W = x.shape[2]

    #out = np.zeros(data_shape, dtype='float64')
    out = np.zeros([N, C, out_H, out_W], dtype='float64')
D
dengkaipeng 已提交
55
    for i in range(N):
56 57 58 59
        for j in range(out_H):
            for k in range(out_W):
                if y[i, j, k] < 0 or y[i, j, k] > in_H - 1 or x[
                        i, j, k] < 0 or x[i, j, k] > in_W - 1:
D
dengkaipeng 已提交
60 61 62 63 64 65
                    out[i, :, j, k] = 0
                else:
                    out[i, :, j, k] = data[i, :, y[i, j, k], x[i, j, k]]

    return out

66

67 68
def clip(x, min_n, max_n):
    return np.maximum(np.minimum(x, max_n), min_n)
D
dengkaipeng 已提交
69 70


71 72 73 74
def unnormalizeAndClip(grid_slice, max_val, align_corners, padding_mode):
    if align_corners:
        grid_slice = 0.5 * ((grid_slice.astype('float64') + 1.0) * max_val)
    else:
75 76
        grid_slice = 0.5 * ((grid_slice.astype('float64') + 1.0) *
                            (max_val + 1)) - 0.5
77 78 79

    if padding_mode == "border":
        grid_slice = clip(grid_slice, 0, max_val)
80
    elif padding_mode == "reflection":
81 82 83 84 85
        double_range = 2 * max_val if align_corners else (max_val + 1) * 2
        grid_abs = np.abs(grid_slice) if align_corners else np.abs(grid_slice +
                                                                   0.5)
        extra = grid_abs - np.floor(grid_abs / double_range) * double_range
        grid_slice = np.minimum(extra, double_range - extra)
86 87
        grid_slice = grid_slice if align_corners else clip(
            grid_slice - 0.5, 0, max_val)
88
    return grid_slice
D
dengkaipeng 已提交
89 90


91 92 93 94 95 96 97 98 99 100
def GridSampler(data,
                grid,
                align_corners=True,
                mode="bilinear",
                padding_mode="zeros"):
    dims = data.shape
    N = dims[0]
    in_C = dims[1]
    in_H = dims[2]
    in_W = dims[3]
D
dengkaipeng 已提交
101

102 103
    out_H = grid.shape[1]
    out_W = grid.shape[2]
D
dengkaipeng 已提交
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    x = grid[:, :, :, 0]
    y = grid[:, :, :, 1]
    y_max = in_H - 1
    x_max = in_W - 1

    x = unnormalizeAndClip(x, x_max, align_corners, padding_mode)
    y = unnormalizeAndClip(y, y_max, align_corners, padding_mode)

    if mode == "bilinear":
        x0 = np.floor(x).astype('int32')
        x1 = x0 + 1
        y0 = np.floor(y).astype('int32')
        y1 = y0 + 1

        wa = np.tile(((x1 - x) * (y1 - y)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wb = np.tile(((x1 - x) * (y - y0)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wc = np.tile(((x - x0) * (y1 - y)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))
        wd = np.tile(((x - x0) * (y - y0)).reshape((N, 1, out_H, out_W)),
                     (1, in_C, 1, 1))

        va = getGridPointValue(data, x0, y0)
        vb = getGridPointValue(data, x0, y1)
        vc = getGridPointValue(data, x1, y0)
        vd = getGridPointValue(data, x1, y1)

        out = (wa * va + wb * vb + wc * vc + wd * vd).astype('float64')
    elif mode == "nearest":
        x = np.round(x).astype('int32')
        y = np.round(y).astype('int32')
        out = getGridPointValue(data, x, y)
D
dengkaipeng 已提交
138 139
    return out

140

D
dengkaipeng 已提交
141
class TestGridSamplerOp(OpTest):
142

D
dengkaipeng 已提交
143
    def setUp(self):
144 145
        self.use_cudnn = False
        self.numeric_grad_delta = 0.0001
D
dengkaipeng 已提交
146
        self.op_type = 'grid_sampler'
W
Wang Bojun 已提交
147
        self.python_api = paddle.nn.functional.grid_sample
148 149 150 151
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
        self.initTestCase()
152
        x = np.random.randint(0, 255, self.x_shape).astype('float64')
D
dengkaipeng 已提交
153

154
        theta = np.zeros(self.theta_shape).astype('float64')
D
dengkaipeng 已提交
155 156 157 158
        for i in range(self.theta_shape[0]):
            for j in range(2):
                for k in range(3):
                    theta[i, j, k] = np.random.rand(1)[0]
159
        grid = AffineGrid(theta, self.grid_shape)
D
dengkaipeng 已提交
160 161

        self.inputs = {'X': x, 'Grid': grid}
162 163 164 165 166 167 168
        self.attrs = {
            'use_cudnn': self.use_cudnn,
            "align_corners": self.align_corners,
            "padding_mode": self.padding_mode,
            "mode": self.mode
        }
        self.outputs = {
169 170 171
            'Output':
            GridSampler(x, grid, self.align_corners, self.mode,
                        self.padding_mode)
172
        }
D
dengkaipeng 已提交
173 174

    def test_check_output(self):
W
Wang Bojun 已提交
175
        self.check_output(check_eager=True)
D
dengkaipeng 已提交
176 177

    def test_check_grad_normal(self):
178 179 180
        self.check_grad(['X', 'Grid'],
                        'Output',
                        max_relative_error=0.01,
W
Wang Bojun 已提交
181 182
                        numeric_grad_delta=self.numeric_grad_delta,
                        check_eager=True)
183 184 185 186 187 188 189 190

    def initTestCase(self):
        self.x_shape = (2, 3, 8, 8)
        self.grid_shape = (2, 7, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
191
        self.use_cudnn = False if core.is_compiled_with_rocm() else True
192 193 194


class Case1(TestGridSamplerOp):
195

196 197 198 199 200 201 202 203 204
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "zeros"
        self.mode = "bilinear"


J
Jiangxinz 已提交
205
class Case1_(TestGridSamplerOp):
206

207 208 209 210 211 212 213 214 215 216
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "border"
        self.mode = "bilinear"


class Case2(TestGridSamplerOp):
217

218 219 220 221 222
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
223
        self.padding_mode = "reflection"
224 225 226 227
        self.mode = "bilinear"


class Case3(TestGridSamplerOp):
228

229 230 231 232 233
    def initTestCase(self):
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
234
        self.padding_mode = "reflection"
235 236
        self.mode = "bilinear"

D
dengkaipeng 已提交
237

238
class Case4(TestGridSamplerOp):
239

D
dengkaipeng 已提交
240
    def initTestCase(self):
241 242
        self.x_shape = (2, 3, 5, 6)
        self.grid_shape = (2, 8, 9, 2)
D
dengkaipeng 已提交
243
        self.theta_shape = (2, 2, 3)
244
        self.align_corners = False
245
        self.padding_mode = "reflection"
246 247
        self.mode = "nearest"
        self.numeric_grad_delta = 0.0001
D
dengkaipeng 已提交
248

249

250 251 252
@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class LargeInputCase(TestGridSamplerOp):
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def get_places(self):
        places = []
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 128, 128)
        self.grid_shape = (2, 130, 130, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = False
        self.padding_mode = "reflection"
        self.mode = "bilinear"

    def test_check_grad_normal(self):
        pass


@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class Case5(LargeInputCase):
276

277 278 279 280 281 282 283 284 285 286 287
    def initTestCase(self):
        self.no_need_check_grad = True
        self.x_shape = (2, 3, 128, 128)
        self.grid_shape = (2, 130, 130, 2)
        self.theta_shape = (2, 2, 3)
        self.align_corners = True
        self.padding_mode = "zeros"
        self.mode = "bilinear"
        self.use_cudnn = False if core.is_compiled_with_rocm() else True


D
dengkaipeng 已提交
288 289
if __name__ == "__main__":
    unittest.main()