sum_mkldnn_op.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "paddle/fluid/operators/sum_op.h"
J
Jacek Czaja 已提交
28
#include "paddle/fluid/platform/mkldnn_reuse.h"
29

30
namespace phi {
31
class DenseTensor;
32
}  // namespace phi
33

W
wanghuancoder 已提交
34
namespace paddle {
35
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
36 37 38 39 40 41
namespace platform {
class CPUDeviceContext;
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

42 43 44
namespace paddle {
namespace operators {

T
tangwei12 已提交
45 46
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
47 48
using platform::to_void_cast;

J
Jacek Czaja 已提交
49
template <typename T>
50 51
class SumMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::sum> {
J
Jacek Czaja 已提交
52
 public:
53
  SumMKLDNNHandler(dnnl::engine engine, platform::Place cpu_place,
J
Jacek Czaja 已提交
54
                   const std::vector<framework::Variable*>& in_vars,
55
                   framework::LoDTensor* z)
J
Jacek Czaja 已提交
56

57
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::sum>(engine, cpu_place),
J
Jacek Czaja 已提交
58
        num_inputs_(0) {
59
    auto dst_tz = phi::vectorize<int64_t>(z->dims());
60
    auto src_tz = dst_tz;
J
Jacek Czaja 已提交
61

62
    std::vector<dnnl::memory::desc> srcs_md;
63
    srcs_md.reserve(in_vars.size());
64 65 66 67
    for (size_t i = 0; i < in_vars.size(); i++) {
      auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
      if (input_it.numel() == 0) {
        continue;
J
Jacek Czaja 已提交
68
      }
69
      srcs_md.push_back(input_it.mem_desc());
70 71
      ++num_inputs_;
    }
72
    std::vector<float> scales(num_inputs_, 1.0f);
J
Jacek Czaja 已提交
73

74 75
    auto dst_md = dnnl::memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);
J
Jacek Czaja 已提交
76

77
    this->AcquireForwardPrimitiveDescriptor(dst_md, scales, srcs_md);
J
Jacek Czaja 已提交
78 79 80 81 82
  }

  // (jczaja) sum oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
83 84
      const dnnl::memory::desc& dst_md, const std::vector<float>& scales,
      const std::vector<dnnl::memory::desc>& srcs_md) {
85 86
    this->fwd_pd_.reset(
        new dnnl::sum::primitive_desc(dst_md, scales, srcs_md, this->engine_));
J
Jacek Czaja 已提交
87 88
  }

89 90
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const framework::Tensor& input,
                                                 int i) {
J
Jacek Czaja 已提交
91 92
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
93
                                            to_void_cast<T>(input_data));
J
Jacek Czaja 已提交
94 95
  }

96
  using platform::MKLDNNHandlerNoCachingT<T, dnnl::sum>::AcquireDstMemory;
J
Jacek Czaja 已提交
97

98
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
99
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc());
J
Jacek Czaja 已提交
100 101 102 103 104 105 106 107
  }

  inline int GetNumInputs(void) { return num_inputs_; }

 private:
  int num_inputs_;
};

108 109 110 111
template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
112 113 114
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Sum must use CPUPlace"));
115
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
116
    const auto& mkldnn_engine = dev_ctx.GetEngine();
117
    auto in_vars = ctx.MultiInputVar("X");
118 119 120

    PADDLE_ENFORCE_NE(in_vars.empty(), true, platform::errors::InvalidArgument(
                                                 "Input variable is empty."));
J
Jacek Czaja 已提交
121
    auto& input0 = in_vars[0]->Get<LoDTensor>();
122
    LoDTensor* output = ctx.Output<LoDTensor>("Out");
123

J
Jacek Czaja 已提交
124
    bool in_place = (input0.numel() > 0) && input0.IsSharedBufferWith(*output);
125

126
    SumMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), in_vars, output);
127

J
Jacek Czaja 已提交
128
    // Create list of SRC MEMs
129
    std::vector<std::shared_ptr<dnnl::memory>> srcs_mem;
J
Jacek Czaja 已提交
130 131
    srcs_mem.reserve(handler.GetNumInputs());
    int input_index = 0;
132
    for (size_t i = 0; i < in_vars.size(); i++) {
J
Jacek Czaja 已提交
133
      auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
134 135
      if (input_it.numel() == 0) {
        continue;
A
Adam 已提交
136
      }
J
Jacek Czaja 已提交
137 138
      srcs_mem.push_back(handler.AcquireSrcMemory(input_it, input_index));
      ++input_index;
139
    }
140

141 142 143 144 145 146 147
    std::unordered_map<int, dnnl::memory> args;
    std::shared_ptr<dnnl::memory> dst_mem;

    for (size_t i = 0; i < srcs_mem.size(); ++i) {
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs_mem[i])});
    }

148
    if (in_place) {
149
      dst_mem = srcs_mem[0];
150 151 152
    } else {
      dst_mem = handler.AcquireDstMemory(output);
    }
153
    args.insert({DNNL_ARG_DST, *dst_mem});
154

J
Jacek Czaja 已提交
155
    auto sum_p = handler.AcquireForwardPrimitive();
156

157
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
J
Jacek Czaja 已提交
158
    sum_p->execute(astream, args);
159 160
    astream.wait();

161
    output->set_mem_desc(dst_mem->get_desc());
162 163 164 165 166 167
  }
};

}  // namespace operators
}  // namespace paddle

J
Jacek Czaja 已提交
168 169 170 171
REGISTER_OP_KERNEL(
    sum, MKLDNN, ::paddle::platform::CPUPlace,
    paddle::operators::SumMKLDNNOpKernel<paddle::platform::bfloat16>,
    paddle::operators::SumMKLDNNOpKernel<float>);