sum_mkldnn_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "paddle/fluid/operators/sum_op.h"
J
Jacek Czaja 已提交
28
#include "paddle/fluid/platform/mkldnn_reuse.h"
29

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

40 41 42 43 44 45
namespace paddle {
namespace operators {

using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
T
tangwei12 已提交
46
using mkldnn::reorder;
47 48
using mkldnn::stream;
using mkldnn::sum;
T
tangwei12 已提交
49 50 51
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
52 53
using platform::to_void_cast;

J
Jacek Czaja 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
template <typename T>
class SumMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::sum> {
 public:
  SumMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place,
                   const std::vector<framework::Variable*>& in_vars,
                   framework::LoDTensor* z, const std::string& uniq_name)

      : platform::MKLDNNHandlerT<T, dnnl::sum>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(framework::vectorize(z->dims()), uniq_name)),
        num_inputs_(0) {
    for (size_t i = 0; i < in_vars.size(); i++) {
      srcs_suffix_.push_back(std::string("-") + std::to_string(i));
    }

    if (!this->isCached()) {
      auto dst_tz = framework::vectorize<int64_t>(z->dims());
      auto src_tz = dst_tz;

      std::vector<memory::desc> srcs_md;
      for (size_t i = 0; i < in_vars.size(); i++) {
        auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
        if (input_it.numel() == 0) {
          continue;
        }
        MKLDNNMemoryFormat input_format = input_it.format();
        srcs_md.push_back(memory::desc(src_tz, platform::MKLDNNGetDataType<T>(),
                                       input_format));
        ++num_inputs_;
      }
      std::vector<float> scales(num_inputs_, 1.0);

      auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                 MKLDNNMemoryFormat::any);

      this->AcquireForwardPrimitiveDescriptor(dst_md, scales, srcs_md);
    }
  }

  // (jczaja) sum oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
      const memory::desc& dst_md, const std::vector<float>& scales,
      const std::vector<memory::desc>& srcs_md) {
    // Sum op does not have backward so no passing from FWD to BWD is needed
    const std::string key_pd = this->key_ + "@fwd_pd";
    this->fwd_pd_ = std::static_pointer_cast<dnnl::sum::primitive_desc>(
        this->dev_ctx_.GetBlob(key_pd));
    if (this->fwd_pd_ == nullptr) {
      this->fwd_pd_.reset(new mkldnn::sum::primitive_desc(
          dst_md, scales, srcs_md, this->engine_));
      this->dev_ctx_.SetBlob(key_pd, this->fwd_pd_);
    }
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor& input, int i) {
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data),
                                            "@src_mem_p" + srcs_suffix_[i]);
  }

  using platform::MKLDNNHandlerT<T, dnnl::sum>::AcquireDstMemory;

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(),
                                            "@dst_mem_p");
  }

  inline int GetNumInputs(void) { return num_inputs_; }

 protected:
  // isCached need to be overloaded as base one works on key_common
  bool isCached() {
    const std::string key_pd = this->key_ + "@fwd_pd";
    this->fwd_pd_ = std::static_pointer_cast<dnnl::sum::primitive_desc>(
        this->dev_ctx_.GetBlob(key_pd));

    const std::string key_p = this->key_ + "@fwd_p";
    return (this->dev_ctx_.GetBlob(key_p) != nullptr);
  }

 private:
  int num_inputs_;
  std::vector<std::string> srcs_suffix_;
};

143 144 145 146
template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
147 148 149
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Sum must use CPUPlace"));
150 151
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto in_vars = ctx.MultiInputVar("X");
152 153 154

    PADDLE_ENFORCE_NE(in_vars.empty(), true, platform::errors::InvalidArgument(
                                                 "Input variable is empty."));
J
Jacek Czaja 已提交
155
    auto& input0 = in_vars[0]->Get<LoDTensor>();
156
    LoDTensor* output = ctx.Output<LoDTensor>("Out");
157

J
Jacek Czaja 已提交
158
    bool in_place = (input0.numel() > 0) && input0.IsSharedBufferWith(*output);
159

J
Jacek Czaja 已提交
160 161
    SumMKLDNNHandler<T> handler(dev_ctx, ctx.GetPlace(), in_vars, output,
                                ctx.OutputName("Out"));
162

J
Jacek Czaja 已提交
163 164 165 166
    // Create list of SRC MEMs
    std::vector<std::shared_ptr<mkldnn::memory>> srcs_mem;
    srcs_mem.reserve(handler.GetNumInputs());
    int input_index = 0;
167
    for (size_t i = 0; i < in_vars.size(); i++) {
J
Jacek Czaja 已提交
168
      auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
169 170
      if (input_it.numel() == 0) {
        continue;
A
Adam 已提交
171
      }
J
Jacek Czaja 已提交
172 173
      srcs_mem.push_back(handler.AcquireSrcMemory(input_it, input_index));
      ++input_index;
174
    }
175

J
Jacek Czaja 已提交
176 177
    auto dst_mem = in_place ? handler.AcquireDstMemory()
                            : handler.AcquireDstMemory(output);
178

J
Jacek Czaja 已提交
179
    auto sum_p = handler.AcquireForwardPrimitive();
180 181 182

    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < srcs_mem.size(); ++i) {
J
Jacek Czaja 已提交
183
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, *(srcs_mem[i])});
184 185 186
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

J
Jacek Czaja 已提交
187 188
    mkldnn::stream astream(dev_ctx.GetEngine());
    sum_p->execute(astream, args);
189 190
    astream.wait();

J
Jacek Czaja 已提交
191 192
    // For in-place execution which sum does not have we need to fake it
    // so from oneDNN dst memory we reorder data into input
193
    if (in_place) {
J
Jacek Czaja 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
      const std::string reorder_key = platform::CreateKey(
          framework::vectorize(output->dims()), ctx.OutputName("Out") + "-I");

      auto& in_out = in_vars[0]->Get<framework::LoDTensor>();
      auto output_tz = framework::vectorize<int64_t>(output->dims());
      platform::ReorderMKLDNNHandler reorder_handler(
          output_tz, output->type(), framework::ToMKLDNNDataType(in_out.type()),
          dev_ctx, dev_ctx.GetEngine(), reorder_key);

      auto target_mem = reorder_handler.AcquireDstMemory(
          output, in_out.format(), ctx.GetPlace());

      auto reorder_p = reorder_handler.AcquireReorder(target_mem, dst_mem);
207 208 209
      reorder_p->execute(astream, *dst_mem, *target_mem);
      astream.wait();
    }
J
Jacek Czaja 已提交
210 211
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
212 213 214 215 216 217 218 219
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(sum, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::SumMKLDNNOpKernel<float>);