test_reduce_op.py 19.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
32

33 34
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
35

36 37
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
38 39


40 41 42
class TestMeanOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
43
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
W
whs 已提交
44 45 46 47
        self.attrs = {'dim': [1]}
        self.outputs = {
            'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
48

49 50
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
51

52 53
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
54 55


56 57 58
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
59 60
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
61 62

    def setUp(self):
63
        self.op_type = "reduce_max"
64
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
65 66 67 68
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
69 70 71

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
72 73


74 75 76
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
77 78
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
79

80 81
    def setUp(self):
        self.op_type = "reduce_min"
82
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
83 84 85 86
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
87

88 89
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
90 91


92 93 94 95 96 97 98 99 100 101 102 103 104
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].all(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


Q
qiaolongfei 已提交
177
class Test1DReduce(OpTest):
G
guosheng 已提交
178
    def setUp(self):
179
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
180
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
181
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
182 183 184

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
185

186 187
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
188 189


Q
qiaolongfei 已提交
190
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
191
    def setUp(self):
192
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
193 194
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
195 196 197
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
198 199 200 201 202
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
246 247


Q
qiaolongfei 已提交
248 249 250 251
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
252
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
253 254 255 256 257 258 259
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
260 261
    def setUp(self):
        self.op_type = "reduce_sum"
262
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
263 264 265 266
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


W
whs 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
## reduction in multi dims
class TestReduceMeanOpMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


282 283 284
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


300 301 302
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


335 336 337
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
338
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
355
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
Z
zhupengyang 已提交
372
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
Z
zhupengyang 已提交
389
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
406
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
407 408 409 410 411 412 413 414 415 416
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


417 418 419
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
420
        self.inputs = {'X': np.random.random(100).astype("float64")}
421 422 423 424 425 426 427 428 429 430
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


473
class TestReduceSumOpError(unittest.TestCase):
474 475 476 477 478 479 480 481 482 483 484
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


485
class TestReduceMeanOpError(unittest.TestCase):
486 487 488 489 490 491 492 493 494 495 496
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_mean_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x1)
            # The input dtype of reduce_mean_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x2)


497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
class API_TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_dtype1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype1)

        def test_dtype2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="float32")
                paddle.sum(data, dtype="float32")

        self.assertRaises(ValueError, test_dtype2)

        def test_dtype3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="bool")

        self.assertRaises(ValueError, test_dtype3)

        def test_dtype4():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data(name="data", shape=[10], dtype="int32")
                paddle.sum(data, dtype="int32")

        self.assertRaises(ValueError, test_dtype3)


class API_TestSumOp(unittest.TestCase):
    def test_1(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="float32")
            result_sum = paddle.sum(input=data, dim=1, dtype="float64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.rand(10, 10).astype(np.float32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.float64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
            result_sum = paddle.sum(input=data, dim=1, dtype="int64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual(
            (res == np.sum(input_data.astype(np.int64), axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
            result_sum = paddle.sum(input=data, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.data("data", shape=[10, 10], dtype="int32")
            result_sum = paddle.sum(input=data, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum])
        self.assertEqual((res == np.sum(input_data, axis=1)).all(), True)

        with fluid.dygraph.guard():
            np_x = np.array([10, 10]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.sum(x, dim=0)
            np_z = z.numpy()
            z_expected = np.array(np.sum(np_x, axis=0))
        self.assertEqual((np_z == z_expected).all(), True)


G
guosheng 已提交
577 578
if __name__ == '__main__':
    unittest.main()