test_reduce_op.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
G
guosheng 已提交
20 21


22
class TestSumOp(OpTest):
G
guosheng 已提交
23
    def setUp(self):
24
        self.op_type = "reduce_sum"
25
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
26
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
27

28 29
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
30

31 32
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
33 34


35 36 37
class TestMeanOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
38
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
W
whs 已提交
39 40 41 42
        self.attrs = {'dim': [1]}
        self.outputs = {
            'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
43

44 45
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
46

47 48
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
49 50


51 52
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
53 54

    def setUp(self):
55
        self.op_type = "reduce_max"
56
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
57 58 59 60
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
61 62 63

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
64 65


66 67
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
68

69 70
    def setUp(self):
        self.op_type = "reduce_min"
71
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
72 73 74 75
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
76

77 78
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
79 80


81 82 83 84 85 86 87 88 89 90 91 92 93
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Q
qiaolongfei 已提交
94
class Test1DReduce(OpTest):
G
guosheng 已提交
95
    def setUp(self):
96
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
97 98
        self.inputs = {'X': np.random.random(20).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
99 100 101

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
102

103 104
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
105 106


Q
qiaolongfei 已提交
107
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
108
    def setUp(self):
109
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
110 111
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
112 113 114
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
115 116 117 118 119
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
163 164


Q
qiaolongfei 已提交
165 166 167 168
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
169
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
170 171 172 173 174 175 176
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
177 178
    def setUp(self):
        self.op_type = "reduce_sum"
179
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
180 181 182 183
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


W
whs 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
## reduction in multi dims
class TestReduceMeanOpMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


G
guosheng 已提交
246 247
if __name__ == '__main__':
    unittest.main()