test_imperative_layer_children.py 2.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.fluid as fluid

import numpy as np
24
from paddle.fluid.framework import _test_eager_guard
25 26 27 28 29 30


class LeNetDygraph(fluid.dygraph.Layer):
    def __init__(self):
        super(LeNetDygraph, self).__init__()
        self.features = nn.Sequential(
C
cnn 已提交
31
            nn.Conv2D(
32 33
                1, 6, 3, stride=1, padding=1),
            nn.ReLU(),
34
            paddle.fluid.dygraph.Pool2D(2, 'max', 2),
C
cnn 已提交
35
            nn.Conv2D(
36 37
                6, 16, 5, stride=1, padding=0),
            nn.ReLU(),
38
            paddle.fluid.dygraph.Pool2D(2, 'max', 2))
39 40 41 42 43 44 45

    def forward(self, inputs):
        x = self.features(inputs)
        return x


class TestLayerChildren(unittest.TestCase):
46
    def func_apply_init_weight(self):
47 48 49 50 51 52 53 54 55 56 57 58
        with fluid.dygraph.guard():
            net = LeNetDygraph()
            net.eval()

            net_layers = nn.Sequential(*list(net.children()))
            net_layers.eval()

            x = paddle.rand([2, 1, 28, 28])
            y1 = net(x)
            y2 = net_layers(x)

            np.testing.assert_allclose(y1.numpy(), y2.numpy())
59 60 61 62 63 64 65 66 67 68 69 70
            return y1, y2

    def test_func_apply_init_weight(self):
        with _test_eager_guard():
            paddle.seed(102)
            self.new_y1, self.new_y2 = self.func_apply_init_weight()
        paddle.seed(102)
        self.ori_y1, self.ori_y2 = self.func_apply_init_weight()

        # compare ori dygraph and new egr
        assert np.array_equal(self.ori_y1.numpy(), self.new_y1.numpy())
        assert np.array_equal(self.ori_y2.numpy(), self.new_y2.numpy())
71 72 73 74


if __name__ == '__main__':
    unittest.main()