# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.nn as nn import paddle.fluid as fluid import numpy as np from paddle.fluid.framework import _test_eager_guard class LeNetDygraph(fluid.dygraph.Layer): def __init__(self): super(LeNetDygraph, self).__init__() self.features = nn.Sequential( nn.Conv2D( 1, 6, 3, stride=1, padding=1), nn.ReLU(), paddle.fluid.dygraph.Pool2D(2, 'max', 2), nn.Conv2D( 6, 16, 5, stride=1, padding=0), nn.ReLU(), paddle.fluid.dygraph.Pool2D(2, 'max', 2)) def forward(self, inputs): x = self.features(inputs) return x class TestLayerChildren(unittest.TestCase): def func_apply_init_weight(self): with fluid.dygraph.guard(): net = LeNetDygraph() net.eval() net_layers = nn.Sequential(*list(net.children())) net_layers.eval() x = paddle.rand([2, 1, 28, 28]) y1 = net(x) y2 = net_layers(x) np.testing.assert_allclose(y1.numpy(), y2.numpy()) return y1, y2 def test_func_apply_init_weight(self): with _test_eager_guard(): paddle.seed(102) self.new_y1, self.new_y2 = self.func_apply_init_weight() paddle.seed(102) self.ori_y1, self.ori_y2 = self.func_apply_init_weight() # compare ori dygraph and new egr assert np.array_equal(self.ori_y1.numpy(), self.new_y1.numpy()) assert np.array_equal(self.ori_y2.numpy(), self.new_y2.numpy()) if __name__ == '__main__': unittest.main()