multihead_matmul_op.cu 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <paddle/fluid/platform/device_context.h>
16

17
#include <algorithm>
W
Wilber 已提交
18
#include <type_traits>
19

20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
22
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
W
Wilber 已提交
23
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/phi/kernels/funcs/blas/blas.h"
25 26 27 28 29

namespace paddle {
namespace operators {

template <typename T>
30 31 32 33 34
__global__ void transpose(T *src,
                          T *dst,
                          const int batch_size,
                          const int seq_len,
                          const int head_num,
35 36 37 38 39 40 41 42 43
                          const int size_per_head) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int seq_id = blockIdx.x % seq_len;
  int head_id = (blockIdx.x % (head_num * seq_len)) / seq_len;
  dst[batch_id * (head_num * seq_len * size_per_head) +
      seq_id * head_num * size_per_head + head_id * size_per_head +
      threadIdx.x] = src[blockIdx.x * size_per_head + threadIdx.x];
}

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
template <typename T>
inline __device__ T add_func(T a, T b);

template <>
__device__ float add_func<float>(float a, float b) {
  return a + b;
}

template <>
__device__ float2 add_func<float2>(float2 a, float2 b) {
  float2 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  return c;
}

template <>
__device__ float4 add_func<float4>(float4 a, float4 b) {
  float4 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  c.z = a.z + b.z;
  c.w = a.w + b.w;
  return c;
68
}
W
Wilber 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#if defined(PADDLE_WITH_CUDA)
template <>
__device__ half2 add_func<half2>(half2 a, half2 b) {
#if __CUDA_ARCH__ >= 530
  return __hadd2(a, b);
#else
  return half2(__float2half(__half2float(a.x) + __half2float(b.x)),
               __float2half(__half2float(b.x) + __half2float(b.y)));
#endif
}

template <>
__device__ half add_func<half>(half a, half b) {
#if __CUDA_ARCH__ >= 530
  return __hadd(a, b);
#else
  return __float2half(__half2float(a) + __half2float(b));
#endif
}
#endif
89 90

template <typename T>
91 92 93
__global__ void TransposeQkvKernel(const int H,
                                   const T *input,
                                   const T *bias,
94
                                   T *output) {
95
  // Input: BxSx3xNxH
W
Wilber 已提交
96
  // Bias: 3xNxH
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  // Output: 3xBxNxSxH
  int n = threadIdx.y;
  int s = blockIdx.x;
  int b = blockIdx.y;
  int m = blockIdx.z;

  const int N = blockDim.y;
  const int S = gridDim.x;
  const int B = gridDim.y;

  const int NH = N * H;
  const int NHS = NH * S;
  const int in_offset = n * H + m * NH + s * 3 * NH + b * NHS * 3;
  const int bias_offset = m * NH + n * H;
  const int out_offset = s * H + n * S * H + b * NHS + m * NHS * B;

  const int i = threadIdx.x;
  output[out_offset + i] =
      add_func(input[in_offset + i], bias[bias_offset + i]);
}
117

W
Wilber 已提交
118 119 120 121 122 123 124 125 126 127 128
template <typename T>
void TransQKVWithBias(const int batch,
                      const int seq_len,
                      const int head_size,
                      const int head_num,
                      const T *input,
                      const T *bias,
                      T *output,
                      gpuStream_t stream);

template <>
129 130 131 132 133 134 135 136
void TransQKVWithBias(const int batch,
                      const int seq_len,
                      const int head_size,
                      const int head_num,
                      const float *input,
                      const float *bias,
                      float *output,
                      gpuStream_t stream) {
137
  // BxSx3xNxH + 3xNxH -> 3xBxNxSxH
Z
Zhaolong Xing 已提交
138
  int scratch_size = batch * head_num * seq_len * seq_len;
139
  const dim3 grid(seq_len, batch, 3);
Z
Zhaolong Xing 已提交
140 141
  // scratch % 4 == 0 to ensure the alignment
  if (head_size % 4 == 0 && scratch_size % 4 == 0) {
142 143 144 145 146 147 148
    const int h = head_size / 4;
    const float4 *input4 = reinterpret_cast<const float4 *>(input);
    const float4 *bias4 = reinterpret_cast<const float4 *>(bias);
    float4 *output4 = reinterpret_cast<float4 *>(output);
    const dim3 block(h, head_num, 1);

    // limit h * head_num to max block size(1024).
149 150
    PADDLE_ENFORCE_LE(h * head_num,
                      1024,
151 152
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
153 154 155
                          head_num,
                          head_size,
                          1024 * 4));
156 157
    TransposeQkvKernel<float4>
        <<<grid, block, 0, stream>>>(h, input4, bias4, output4);
Z
Zhaolong Xing 已提交
158
  } else if (head_size % 2 == 0 && scratch_size % 2 == 0) {
159 160 161 162 163 164
    const int h = head_size / 2;
    const float2 *input2 = reinterpret_cast<const float2 *>(input);
    const float2 *bias2 = reinterpret_cast<const float2 *>(bias);
    float2 *output2 = reinterpret_cast<float2 *>(output);
    const dim3 block(h, head_num, 1);
    // limit h * head_num to max block size(1024).
165 166
    PADDLE_ENFORCE_LE(h * head_num,
                      1024,
167 168
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
169 170 171
                          head_num,
                          head_size,
                          1024 * 2));
172 173
    TransposeQkvKernel<float2>
        <<<grid, block, 0, stream>>>(h, input2, bias2, output2);
174 175 176
  } else {
    const dim3 block(head_size, head_num, 1);
    // limit head_size * head_num to max block size(1024).
177 178
    PADDLE_ENFORCE_LE(head_size * head_num,
                      1024,
179 180
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
181 182 183
                          head_num,
                          head_size,
                          1024));
184 185
    TransposeQkvKernel<float>
        <<<grid, block, 0, stream>>>(head_size, input, bias, output);
186 187
  }
}
188

W
Wilber 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#if defined(PADDLE_WITH_CUDA)
template <>
void TransQKVWithBias(const int batch,
                      const int seq_len,
                      const int head_size,
                      const int head_num,
                      const platform::float16 *input,
                      const platform::float16 *bias,
                      platform::float16 *output,
                      gpuStream_t stream) {
  // BxSx3xNxH + 3xNxH -> 3xBxNxSxH
  int scratch_size = batch * head_num * seq_len * seq_len;
  const dim3 grid(seq_len, batch, 3);
  if (head_size % 2 == 0 && scratch_size % 2 == 0) {
    const int h = head_size / 2;
    const half2 *input2 = reinterpret_cast<const half2 *>(input);
    const half2 *bias2 = reinterpret_cast<const half2 *>(bias);
    half2 *output2 = reinterpret_cast<half2 *>(output);
    const dim3 block(h, head_num, 1);
    // limit h * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(h * head_num,
                      1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num,
                          head_size,
                          1024 * 2));
    TransposeQkvKernel<half2>
        <<<grid, block, 0, stream>>>(h, input2, bias2, output2);
  } else {
    const dim3 block(head_size, head_num, 1);
    const half *input_half = reinterpret_cast<const half *>(input);
    const half *bias_half = reinterpret_cast<const half *>(bias);
    half *output_half = reinterpret_cast<half *>(output);

    // limit head_size * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(head_size * head_num,
                      1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num,
                          head_size,
                          1024));
    TransposeQkvKernel<half><<<grid, block, 0, stream>>>(
        head_size, input_half, bias_half, output_half);
  }
}
#endif

F
feng_shuai 已提交
238 239
inline int round_up(int seq_len, int multiple = 32) {
  PADDLE_ENFORCE_GT(
240 241
      multiple,
      0,
F
feng_shuai 已提交
242 243 244 245 246 247
      platform::errors::InvalidArgument(
          "multiple should be a positive number,but it's (%d)", multiple));
  return ((seq_len + multiple - 1) / multiple) * multiple;
}

template <typename T>
248 249 250
__global__ void broadcast(const T *src,
                          T *dst,
                          const int seq_len,
F
feng_shuai 已提交
251 252 253 254 255 256 257 258
                          const int head_num) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int dst_offset = blockIdx.x * seq_len;
  if (threadIdx.x < seq_len) {
    dst[threadIdx.x + dst_offset] = src[threadIdx.x + batch_id * seq_len];
  }
}

259 260 261 262 263 264 265 266 267 268 269 270 271
template <typename T>
__global__ void broadcast_batch_head_number(const T *src,
                                            T *dst,
                                            const int batch_size,
                                            const int seq_len,
                                            const int head_num) {
  int src_seq_id = blockIdx.x % seq_len;
  int dst_offset = blockIdx.x * seq_len;
  if (threadIdx.x < seq_len) {
    dst[threadIdx.x + dst_offset] = src[threadIdx.x + src_seq_id * seq_len];
  }
}

272
template <typename DeviceContext, typename T>
273
class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
274 275
 public:
  void Compute(const framework::ExecutionContext &context) const override {
276 277 278 279
    auto *input = context.Input<phi::DenseTensor>("Input");
    auto *w = context.Input<phi::DenseTensor>("W");
    auto *bias = context.Input<phi::DenseTensor>("Bias");
    auto *bias_qk = context.Input<phi::DenseTensor>("BiasQK");
280

281 282 283
    auto *input_d = input->data<T>();
    auto *w_d = w->data<T>();
    auto *bias_d = bias->data<T>();
F
feng_shuai 已提交
284
    auto *bias_qk_d = bias_qk ? bias_qk->data<T>() : nullptr;
285 286 287 288 289
    T scale = static_cast<T>(context.Attr<float>("alpha"));

    int head_number = context.Attr<int>("head_number");
    // compute q*k with eltadd
    auto &device_ctx = context.template device_context<DeviceContext>();
F
feng_shuai 已提交
290
    auto stream = device_ctx.stream();
291 292 293 294 295 296 297
    // should be (B * S * hidden)
    auto input_dims = input->dims();
    // shouble be (hidden * 3 * all_head_size)
    auto w_dims = w->dims();
    int batch = input_dims[0];
    int seq_len = input_dims[1];
    int hidden = input_dims[2];
298
    phi::DenseTensor temp_bias_tensor;
F
feng_shuai 已提交
299
    // if bias_qk is[batch, 1, 1, seq_len], the bias_qk_d need to be broadcasted
F
feng_shuai 已提交
300
    if (bias_qk && bias_qk->numel() == (batch * seq_len)) {
301
      VLOG(4) << "Do broadcasted bias_qk from [batch, 1, 1, seq_len]";
F
feng_shuai 已提交
302
      temp_bias_tensor.Resize({batch * head_number * seq_len * seq_len});
W
Wilber 已提交
303 304
      auto *temp_qk_bias = device_ctx.template Alloc<T>(
          &temp_bias_tensor, temp_bias_tensor.numel() * sizeof(T));
F
feng_shuai 已提交
305 306
      int grid = batch * head_number * seq_len;
      int block = round_up(seq_len);
307 308
      broadcast<<<grid, block, 0, stream>>>(
          bias_qk_d, temp_qk_bias, seq_len, head_number);
F
feng_shuai 已提交
309 310
      bias_qk_d = static_cast<const T *>(temp_qk_bias);
    }
311 312 313 314 315 316 317 318 319 320 321 322 323
    // if bias_qk is[1, 1, seq_len, seq_len], the bias_qk_d need to be
    // broadcasted
    if (bias_qk && bias_qk->numel() == (1 * seq_len * seq_len)) {
      VLOG(4) << "do broadcasted bias_qk from  [1, 1, seq_len, seq_len]";
      temp_bias_tensor.Resize({batch * head_number * seq_len * seq_len});
      auto *temp_qk_bias = device_ctx.template Alloc<T>(
          &temp_bias_tensor, temp_bias_tensor.numel() * sizeof(T));
      int grid = batch * head_number * seq_len;
      int block = round_up(seq_len);
      broadcast_batch_head_number<<<grid, block, 0, stream>>>(
          bias_qk_d, temp_qk_bias, batch, seq_len, head_number);
      bias_qk_d = static_cast<const T *>(temp_qk_bias);
    }
F
feng_shuai 已提交
324 325 326
    if (!bias_qk) {
      int size = batch * head_number * seq_len * seq_len;
      temp_bias_tensor.Resize({size});
W
Wilber 已提交
327 328
      auto *temp_qk_bias = device_ctx.template Alloc<T>(
          &temp_bias_tensor, temp_bias_tensor.numel() * sizeof(T));
F
feng_shuai 已提交
329 330 331 332 333 334 335
#ifdef PADDLE_WITH_HIP
      hipMemset(temp_qk_bias, 0, sizeof(float) * size);
#else
      cudaMemset(temp_qk_bias, 0, sizeof(float) * size);
#endif
      bias_qk_d = static_cast<const T *>(temp_qk_bias);
    }
336 337 338
    int all_head_size = w_dims[2];
    int head_size = all_head_size / head_number;

339
    auto *out = context.Output<phi::DenseTensor>("Out");
340
    out->Resize({batch, seq_len, all_head_size});
W
Wilber 已提交
341 342
    auto *output_d =
        device_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
343

344
    // (B*S, hidden)
345
    const phi::DenseTensor input_matrix =
346 347
        framework::ReshapeToMatrix(*input, 2 /*x_num_col_dims */);
    // (hidden, 3 * all_head_size)
348
    const phi::DenseTensor w_matrix =
349 350
        framework::ReshapeToMatrix(*w, 1 /*y_num_col_dims*/);

351
    phi::DenseTensor temp_out_tensor;
352
    auto temp_out_dims =
353
        phi::make_ddim({batch, seq_len, 3, head_number, head_size});
354
    temp_out_tensor.Resize(
355
        {batch * seq_len, phi::product(temp_out_dims) / (batch * seq_len)});
W
Wilber 已提交
356 357
    auto *temp_out_data = device_ctx.template Alloc<T>(
        &temp_out_tensor, temp_out_tensor.numel() * sizeof(T));
358 359

    // (B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)
L
Leo Chen 已提交
360
    auto blas = phi::funcs::GetBlas<phi::GPUContext, T>(device_ctx);
361
    blas.MatMul(input_matrix, w_matrix, &temp_out_tensor);
362 363
    VLOG(2) << "(B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)";
    VLOG(2) << temp_out_tensor;
364 365
    // temp_out_tensor.Resize(temp_out_dims);

366
    phi::DenseTensor multihead_temp_tensor;
367 368 369
    // B * head_number * S * S * 1 + B * S * 3 * N * H
    int scratch_size = batch * head_number * seq_len * seq_len * 1;
    multihead_temp_tensor.Resize({scratch_size + temp_out_tensor.numel()});
W
Wilber 已提交
370 371 372
    auto *multihead_temp_data = device_ctx.template Alloc<T>(
        &multihead_temp_tensor, multihead_temp_tensor.numel() * sizeof(T));

373 374 375 376 377
    auto *qkptr = multihead_temp_data;
    auto *tptr = multihead_temp_data + scratch_size;

    // Do the transpose with bias.
    // BxSx3xNxH => tptr: 3xBxNxSxH.
378 379 380 381 382 383 384 385
    TransQKVWithBias(batch,
                     seq_len,
                     head_size,
                     head_number,
                     temp_out_data,
                     bias_d,
                     tptr,
                     stream);
W
Wilber 已提交
386 387 388 389 390 391 392 393 394
    if (std::is_same<T, platform::float16>::value) {
      math::MultiHeadGPUComputeFunctor<half> multihead_compute_func;
      multihead_compute_func(device_ctx,
                             batch,
                             seq_len,
                             head_number,
                             head_size,
                             reinterpret_cast<half *>(qkptr),
                             reinterpret_cast<const half *>(bias_qk_d),
F
feng_shuai 已提交
395
                             false,
W
Wilber 已提交
396 397 398 399 400 401 402 403 404 405 406 407
                             reinterpret_cast<half *>(tptr),
                             __float2half(static_cast<float>(scale)),
                             __float2half(0.0));
    } else {
      math::MultiHeadGPUComputeFunctor<T> multihead_compute_func;
      multihead_compute_func(device_ctx,
                             batch,
                             seq_len,
                             head_number,
                             head_size,
                             qkptr,
                             bias_qk_d,
F
feng_shuai 已提交
408
                             false,
W
Wilber 已提交
409 410 411 412
                             tptr,
                             scale,
                             T(0.0));
    }
413 414 415

    int grid = batch * head_number * seq_len;
    int block = head_size;
416 417
    transpose<T><<<grid, block, 0, stream>>>(
        tptr, output_d, batch, seq_len, head_number, head_size);
418 419 420 421 422 423 424
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
Wilber 已提交
425 426 427 428 429 430
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
REGISTER_OP_CUDA_KERNEL(
    multihead_matmul,
    ops::MultiHeadMatMulV2Kernel<phi::GPUContext, paddle::platform::float16>,
    ops::MultiHeadMatMulV2Kernel<phi::GPUContext, float>);
#else
L
Leo Chen 已提交
431 432
REGISTER_OP_CUDA_KERNEL(multihead_matmul,
                        ops::MultiHeadMatMulV2Kernel<phi::GPUContext, float>);
W
Wilber 已提交
433
#endif