fused_attention_op.cu 32.9 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
16

L
Li Min 已提交
17
#include <cub/cub.cuh>
18

L
Li Min 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21 22 23 24
#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
26
#include "paddle/phi/api/include/tensor.h"
27
#include "paddle/phi/backends/gpu/gpu_device_function.h"
28 29
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
30
#include "paddle/phi/kernels/funcs/math_function.h"
L
Li Min 已提交
31

32
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
33
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
34 35 36 37
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

L
Li Min 已提交
38 39 40
namespace paddle {
namespace operators {

41
template <typename T>
42
static void AllReduce(phi::DenseTensor &tensor,  // NOLINT
43
                      const int ring_id,
L
Leo Chen 已提交
44
                      const phi::GPUContext &ctx) {
45 46
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
47 48 49 50
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup *pg = map->get(ring_id);
51
    auto pg_nccl = static_cast<distributed::ProcessGroupNCCL *>(pg);
52 53
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
54
    auto task = pg_nccl->AllReduce(&tensor, tensor, opts, true, true);
55 56 57 58 59 60 61
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void *sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
62
    void *recvbuff = ctx.template Alloc<T>(&tensor, tensor.numel() * sizeof(T));
63 64 65 66 67
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
68 69 70 71 72 73 74
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

L
Li Min 已提交
75 76 77 78 79
template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
80
    auto *input_x = ctx.Input<phi::DenseTensor>("X");
81
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
L
Li Min 已提交
82 83
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
84 85 86 87 88
    auto *ln_scale = ctx.Input<phi::DenseTensor>("LnScale");
    auto *ln_bias = ctx.Input<phi::DenseTensor>("LnBias");
    auto *ln_mean = ctx.Output<phi::DenseTensor>("LnMean");
    auto *ln_var = ctx.Output<phi::DenseTensor>("LnVariance");
    auto *ln_out = ctx.Output<phi::DenseTensor>("LnOut");
L
Li Min 已提交
89 90 91

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    auto *qkv_weight = ctx.Input<phi::DenseTensor>("QKVW");
    auto *qkv_bias = ctx.Input<phi::DenseTensor>("QKVBias");
    auto *qkv_out = ctx.Output<phi::DenseTensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<phi::DenseTensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<phi::DenseTensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<phi::DenseTensor>("TransposeOut2");
    auto *cache_kv = ctx.Input<phi::DenseTensor>("CacheKV");
    auto *cache_kv_out = ctx.Output<phi::DenseTensor>("CacheKVOut");
    auto *qk_out = ctx.Output<phi::DenseTensor>("QKOut");
    auto *qktv_out = ctx.Output<phi::DenseTensor>("QKTVOut");
    auto *softmax_out = ctx.Output<phi::DenseTensor>("SoftmaxOut");
    auto *attn_dropout_mask_out =
        ctx.Output<phi::DenseTensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<phi::DenseTensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<phi::DenseTensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<phi::DenseTensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<phi::DenseTensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<phi::DenseTensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<phi::DenseTensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<phi::DenseTensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<phi::DenseTensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<phi::DenseTensor>("DropoutMaskOut");
L
Li Min 已提交
117
    auto *bias_dropout_residual_out =
118 119 120
        ctx.Output<phi::DenseTensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<phi::DenseTensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<phi::DenseTensor>("Ln2Variance");
L
Li Min 已提交
121 122 123
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
L
Li Min 已提交
124
    bool is_test_1 = ctx.Attr<bool>("is_test");
L
Li Min 已提交
125 126 127 128
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
129 130
    auto *seed_1 =
        ctx.HasInput("Seed1") ? ctx.Input<phi::DenseTensor>("Seed1") : nullptr;
L
Li Min 已提交
131 132
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
133
    int ring_id = ctx.Attr<int>("ring_id");
L
Li Min 已提交
134 135

    // final output.
136
    auto *out = ctx.Output<phi::DenseTensor>("Y");
L
Li Min 已提交
137 138 139 140 141 142 143

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
144
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
145 146
    auto *qkv_out_data =
        dev_ctx.template Alloc<T>(qkv_out, qkv_out->numel() * sizeof(T));
147
    auto *qkv_bias_out_data =
148 149 150 151
        (qkv_bias == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(qkv_bias_out,
                                        qkv_bias_out->numel() * sizeof(T));
L
Li Min 已提交
152 153

    // get data ptr for FMHA.
154 155
    auto *transpose_out_2_data = dev_ctx.template Alloc<T>(
        transpose_out_2, transpose_out_2->numel() * sizeof(T));
156 157 158
    auto *cache_kv_out_data =
        (cache_kv_out == nullptr)
            ? nullptr
159 160 161 162 163 164
            : dev_ctx.template Alloc<T>(cache_kv_out,
                                        cache_kv_out->numel() * sizeof(T));
    auto *qk_out_data =
        dev_ctx.template Alloc<T>(qk_out, qk_out->numel() * sizeof(T));
    auto *qktv_out_data =
        dev_ctx.template Alloc<T>(qktv_out, qktv_out->numel() * sizeof(T));
165
    auto *src_mask_out_data =
166 167 168 169 170 171 172 173 174 175 176 177 178
        (src_mask == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(src_mask_out,
                                        src_mask_out->numel() * sizeof(T));
    auto *softmax_out_data = dev_ctx.template Alloc<T>(
        softmax_out, softmax_out->numel() * sizeof(T));
    auto *attn_dropout_mask_out_data = dev_ctx.template Alloc<uint8_t>(
        attn_dropout_mask_out,
        attn_dropout_mask_out->numel() * sizeof(uint8_t));
    auto *attn_dropout_out_data = dev_ctx.template Alloc<T>(
        attn_dropout_out, attn_dropout_out->numel() * sizeof(T));
    auto *fmha_out_data =
        dev_ctx.template Alloc<T>(fmha_out, fmha_out->numel() * sizeof(T));
L
Li Min 已提交
179 180 181

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
182 183
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
184 185
    auto *out_linear_out_data = dev_ctx.template Alloc<T>(
        out_linear_out, out_linear_out->numel() * sizeof(T));
L
Li Min 已提交
186 187

    // get data ptr for bias+dropout+residual+layernorm
188 189 190 191
    auto *dropout_mask_out_data = dev_ctx.template Alloc<uint8_t>(
        dropout_mask_out, dropout_mask_out->numel() * sizeof(uint8_t));
    auto *final_out_data =
        dev_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
L
Li Min 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

205 206
    auto layer_norm_compute = AttnLayerNorm<T>(
        ctx.cuda_device_context(), epsilon, bsz_seq, dim_embed);
207 208 209 210 211

    bool compute_bias = true;
    if (qkv_bias == nullptr) {
      compute_bias = false;
    }
L
Li Min 已提交
212
    // (transA, transB, compute_bias) = (false, true, true)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                     false,
                                     true,
                                     bsz_seq,
                                     output_size,
                                     input_size,
                                     compute_bias);

    AttnDropoutParam attn_dropout_param(is_test_1,
                                        dropout_implementation_1,
                                        attn_dropout_rate,
                                        is_upscale_in_train_1,
                                        is_fix_seed_1,
                                        seed_val_1,
                                        seed_1);
    auto fmha_ref_compute = FMHARef<T>(ctx.cuda_device_context(),
                                       batch_size,
                                       max_seq_len,
                                       num_head,
                                       dim_head,
                                       attn_dropout_param);
L
Li Min 已提交
234 235 236

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
237 238 239 240 241
    // NOTE(Yuang Liu): For general input size == output size, change the
    // position won't have effects. For mp, the output size is mp_head * dkey
    // which is actually the input size. While the input size is hidden size,
    // which is actually the output size. So for out linear, switch the
    // input size and output size.
242 243 244 245 246 247 248
    auto out_linear_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                            false,
                                            false,
                                            bsz_seq,
                                            input_size,
                                            output_size,
                                            false);
L
Li Min 已提交
249 250
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
251 252 253 254
        ctx.cuda_device_context(),
        bsz_seq,
        dim_embed,
        dropout_param2,
L
Li Min 已提交
255 256 257
        ln_epsilon);

    if (pre_layer_norm) {
L
Li Min 已提交
258 259 260
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
261 262 263 264 265 266
      auto *ln_mean_data =
          dev_ctx.template Alloc<U>(ln_mean, ln_mean->numel() * sizeof(U));
      auto *ln_var_data =
          dev_ctx.template Alloc<U>(ln_var, ln_var->numel() * sizeof(U));
      auto *ln_out_data =
          dev_ctx.template Alloc<T>(ln_out, ln_out->numel() * sizeof(T));
L
Li Min 已提交
267

268 269 270 271 272 273 274 275
      layer_norm_compute.ComputeForward(x_data,
                                        ln_scale_data,
                                        ln_bias_data,
                                        ln_out_data,
                                        ln_mean_data,
                                        ln_var_data);
      qkv_compute.ComputeForward(
          qkv_weight, ln_out, qkv_bias, qkv_out, qkv_bias_out);
L
Li Min 已提交
276
    } else {
277 278
      qkv_compute.ComputeForward(
          qkv_weight, input_x, qkv_bias, qkv_out, qkv_bias_out);
L
Li Min 已提交
279
    }
280
    if (qkv_bias == nullptr) {
281 282 283 284 285 286 287 288 289 290 291 292
      fmha_ref_compute.ComputeForward(*qkv_out,
                                      cache_kv,
                                      src_mask,
                                      transpose_out_2,
                                      cache_kv_out,
                                      qk_out,
                                      src_mask_out,
                                      softmax_out,
                                      attn_dropout_mask_out,
                                      attn_dropout_out,
                                      qktv_out,
                                      fmha_out);
293
    } else {
294 295 296 297 298 299 300 301 302 303 304 305
      fmha_ref_compute.ComputeForward(*qkv_bias_out,
                                      cache_kv,
                                      src_mask,
                                      transpose_out_2,
                                      cache_kv_out,
                                      qk_out,
                                      src_mask_out,
                                      softmax_out,
                                      attn_dropout_mask_out,
                                      attn_dropout_out,
                                      qktv_out,
                                      fmha_out);
306
    }
307

L
Li Min 已提交
308 309 310
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
311 312
    out_linear_compute.ComputeForward(
        out_linear_weight, fmha_out, nullptr, out_linear_out, nullptr);
313 314 315
    // tensor model parallel
    AllReduce<T>(*out_linear_out, ring_id, ctx.cuda_device_context());

316 317
    bool add_residual = ctx.Attr<bool>("add_residual");
    const T *residual_ptr = add_residual ? x_data : nullptr;
L
Li Min 已提交
318 319 320
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
321 322 323 324 325 326
          ctx.cuda_device_context(),
          out_linear_out_data,
          residual_ptr,
          out_linear_bias_data,
          final_out_data,
          dropout_mask_out_data);
L
Li Min 已提交
327
    } else {
328
      // TODO(Xreki): support post layer_norm case when add_residual is false.
329 330
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
331 332 333 334 335 336
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

      const U *ln_scale_2_ptr = ln_scale_2 ? ln_scale_2->data<U>() : nullptr;
      const U *ln_bias_2_ptr = ln_bias_2 ? ln_bias_2->data<U>() : nullptr;
337 338 339 340 341 342 343
      T *bias_dropout_residual_out_ptr = dev_ctx.template Alloc<T>(
          bias_dropout_residual_out,
          bias_dropout_residual_out->numel() * sizeof(T));
      U *ln_mean_2_ptr =
          dev_ctx.template Alloc<U>(ln_mean_2, ln_mean_2->numel() * sizeof(U));
      U *ln_var_2_ptr =
          dev_ctx.template Alloc<U>(ln_var_2, ln_var_2->numel() * sizeof(U));
L
Li Min 已提交
344 345
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
346 347 348 349 350 351 352 353 354 355 356
          ctx.cuda_device_context(),
          out_linear_out_data,
          residual_ptr,
          out_linear_bias_data,
          ln_scale_2_ptr,
          ln_bias_2_ptr,
          bias_dropout_residual_out_ptr,
          dropout_mask_out_data,
          final_out_data,
          ln_mean_2_ptr,
          ln_var_2_ptr);
L
Li Min 已提交
357
    }
L
Li Min 已提交
358 359 360
  }
};

361 362 363 364 365 366 367 368 369 370
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
371
    auto &dev_ctx = ctx.template device_context<phi::GPUContext>();
L
Li Min 已提交
372
    bool is_test_1 = ctx.Attr<bool>("is_test");
373 374 375 376
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
377 378
    auto *seed_1 =
        ctx.HasInput("Seed1") ? ctx.Input<phi::DenseTensor>("Seed1") : nullptr;
379 380
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
381
    int ring_id = ctx.Attr<int>("ring_id");
382 383

    // get inputs.
384
    auto *d_y = ctx.Input<phi::DenseTensor>(framework::GradVarName("Y"));
385 386 387
    auto *d_y_data = d_y->data<T>();

    // fw input
388 389 390
    auto *input_x = ctx.Input<phi::DenseTensor>("X");
    auto *ln_scale = ctx.Input<phi::DenseTensor>("LnScale");
    auto *ln_2_scale = ctx.Input<phi::DenseTensor>("Ln2Scale");
391 392 393 394 395
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
396 397 398 399 400
    auto *src_mask = ctx.Input<phi::DenseTensor>("SrcMask");
    auto *qkv_weight = ctx.Input<phi::DenseTensor>("QKVW");
    auto *qkv_bias = ctx.Input<phi::DenseTensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<phi::DenseTensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<phi::DenseTensor>("OutLinearBias");
401 402
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
403
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
404
    auto *out_linear_weight_data = out_linear_weight->data<T>();
405 406
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
407 408

    // fw output
409 410 411 412 413 414 415 416 417 418 419
    auto *fmha_out = ctx.Input<phi::DenseTensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<phi::DenseTensor>("TransposeOut2");
    auto *qk_out = ctx.Input<phi::DenseTensor>("QKOut");
    auto *softmax_out = ctx.Input<phi::DenseTensor>("SoftmaxOut");
    auto *attn_dropout_mask_out =
        ctx.Input<phi::DenseTensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<phi::DenseTensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<phi::DenseTensor>("SrcMaskOut");
    auto *ln_2_mean = ctx.Input<phi::DenseTensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<phi::DenseTensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<phi::DenseTensor>("DropoutMaskOut");
420
    auto *bias_dropout_residual_out =
421
        ctx.Input<phi::DenseTensor>("BiasDropoutResidualOut");
422 423 424
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
425 426
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
427 428 429
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
430 431 432
    auto *d_x = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto *d_qkv_out =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKVOut"));
433
    auto *d_qkv_bias_out =
434 435 436
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKTVOut"));
437
    auto *d_transpose_out_2 =
438 439 440
        ctx.Output<phi::DenseTensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKOut"));
441
    auto *d_softmax_out =
442
        ctx.Output<phi::DenseTensor>(framework::GradVarName("SoftmaxOut"));
443
    auto *d_attn_dropout_out =
444
        ctx.Output<phi::DenseTensor>(framework::GradVarName("AttnDropoutOut"));
445
    auto *d_src_mask_out =
446 447 448
        ctx.Output<phi::DenseTensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("FMHAOut"));
449
    auto *d_out_linear_out =
450 451 452
        ctx.Output<phi::DenseTensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out = ctx.Output<phi::DenseTensor>(
        framework::GradVarName("BiasDropoutResidualOut"));
453
    auto *d_x_data = dev_ctx.template Alloc<T>(d_x, d_x->numel() * sizeof(T));
454 455 456 457
    // when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
    // space can be reused.
    auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
                               ? nullptr
458 459
                               : dev_ctx.template Alloc<T>(
                                     d_qkv_out, d_qkv_out->numel() * sizeof(T));
460 461 462
    auto *d_qkv_bias_out_data =
        (d_qkv_bias_out == nullptr)
            ? nullptr
463 464 465 466 467 468 469 470 471 472 473 474
            : dev_ctx.template Alloc<T>(d_qkv_bias_out,
                                        d_qkv_bias_out->numel() * sizeof(T));
    auto *d_qktv_out_data =
        dev_ctx.template Alloc<T>(d_qktv_out, d_qktv_out->numel() * sizeof(T));
    auto *d_transpose_out_2_data = dev_ctx.template Alloc<T>(
        d_transpose_out_2, d_transpose_out_2->numel() * sizeof(T));
    auto *d_qk_out_data =
        dev_ctx.template Alloc<T>(d_qk_out, d_qk_out->numel() * sizeof(T));
    auto *d_softmax_out_data = dev_ctx.template Alloc<T>(
        d_softmax_out, d_softmax_out->numel() * sizeof(T));
    auto *d_attn_dropout_out_data = dev_ctx.template Alloc<T>(
        d_attn_dropout_out, d_attn_dropout_out->numel() * sizeof(T));
475
    auto *d_src_mask_out_data =
476 477 478 479 480 481 482 483
        (src_mask == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(d_src_mask_out,
                                        d_src_mask_out->numel() * sizeof(T));
    auto *d_fmha_out_data =
        dev_ctx.template Alloc<T>(d_fmha_out, d_fmha_out->numel() * sizeof(T));
    auto *d_out_linear_out_data = dev_ctx.template Alloc<T>(
        d_out_linear_out, d_out_linear_out->numel() * sizeof(T));
484 485

    // parameter grad
486 487 488 489
    auto *d_qkv_weight =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("QKVBias"));
490
    auto *d_out_linear_weight =
491
        ctx.Output<phi::DenseTensor>(framework::GradVarName("OutLinearW"));
492
    auto *d_out_linear_bias =
493 494 495 496 497
        ctx.Output<phi::DenseTensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Ln2Bias"));
498

499 500 501 502 503 504 505 506 507
    auto *d_qkv_weight_data = dev_ctx.template Alloc<T>(
        d_qkv_weight, d_qkv_weight->numel() * sizeof(T));
    auto *d_qkv_bias_data =
        (d_qkv_bias == nullptr)
            ? nullptr
            : dev_ctx.template Alloc<T>(d_qkv_bias,
                                        d_qkv_bias->numel() * sizeof(T));
    auto *d_out_linear_weight_data = dev_ctx.template Alloc<T>(
        d_out_linear_weight, d_out_linear_weight->numel() * sizeof(T));
508
    auto *d_out_linear_bias_data =
509 510
        (d_out_linear_bias == nullptr)
            ? nullptr
511 512
            : dev_ctx.template Alloc<T>(d_out_linear_bias,
                                        d_out_linear_bias->numel() * sizeof(T));
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

528
    bool add_residual = ctx.Attr<bool>("add_residual");
529
    phi::DenseTensor d_residual;
530 531 532
    T *d_residual_data = nullptr;
    if (add_residual) {
      d_residual.Resize(input_x_dims);
533 534
      d_residual_data = dev_ctx.template Alloc<T>(
          &d_residual, d_residual.numel() * sizeof(T));
535
    }
536 537 538

    bool transA = false;
    bool transB = true;
539
    bool compute_qkv_bias = qkv_bias ? true : false;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    auto layer_norm_compute = AttnLayerNorm<T>(
        ctx.cuda_device_context(), epsilon, bsz_seq, dim_embed);
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                     transA,
                                     transB,
                                     bsz_seq,
                                     output_size,
                                     input_size,
                                     compute_qkv_bias);
    AttnDropoutParam attn_dropout_param(is_test_1,
                                        dropout_implementation_1,
                                        attn_dropout_prob,
                                        is_upscale_in_train_1,
                                        is_fix_seed_1,
                                        seed_val_1,
                                        seed_1);
    auto fmha_ref_compute = FMHARef<T>(ctx.cuda_device_context(),
                                       batch_size,
                                       max_seq_len,
                                       num_head,
                                       dim_head,
                                       attn_dropout_param);
562 563 564
    output_size = hidden_size;
    transA = false;
    transB = false;
565
    bool compute_bias = false;
566
    // (b*s, num_head * dim_head) * (num_head * dim_head, dim_embed)
567 568 569 570 571 572 573
    auto out_linear_compute = AttnMatMul<T>(ctx.cuda_device_context(),
                                            transA,
                                            transB,
                                            bsz_seq,
                                            input_size,
                                            output_size,
                                            compute_bias);
574 575
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
576 577 578 579
        ctx.cuda_device_context(),
        bsz_seq,
        dim_embed,
        dropout_param2,
580 581
        ln2epsilon);

L
Li Min 已提交
582 583
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
584 585 586 587 588 589
          ctx.cuda_device_context(),
          d_y_data,
          dropout_mask_out_data,
          d_out_linear_out_data,
          d_residual_data,
          d_out_linear_bias_data);
L
Li Min 已提交
590 591 592 593 594 595
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
596 597
          (d_ln_2_scale == nullptr
               ? nullptr
598 599
               : dev_ctx.template Alloc<U>(d_ln_2_scale,
                                           d_ln_2_scale->numel() * sizeof(U)));
L
Li Min 已提交
600
      auto *d_ln_2_bias_data =
601 602
          (d_ln_2_bias == nullptr
               ? nullptr
603 604 605 606 607
               : dev_ctx.template Alloc<U>(d_ln_2_bias,
                                           d_ln_2_bias->numel() * sizeof(U)));
      auto *d_bias_dropout_residual_out_data = dev_ctx.template Alloc<T>(
          d_bias_dropout_residual_out,
          d_bias_dropout_residual_out->numel() * sizeof(T));
L
Li Min 已提交
608 609

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
610 611 612 613 614 615 616 617 618 619 620 621 622
          ctx.cuda_device_context(),
          d_y_data,
          bias_dropout_residual_out_data,
          dropout_mask_out_data,
          ln_2_scale_data,
          ln_2_mean_data,
          ln_2_var_data,
          d_bias_dropout_residual_out_data,
          d_ln_2_scale_data,
          d_ln_2_bias_data,
          d_out_linear_out_data,
          d_out_linear_bias_data,
          d_residual_data);
L
Li Min 已提交
623
    }
624

625 626 627 628 629 630
    out_linear_compute.ComputeBackward(fmha_out,
                                       out_linear_weight,
                                       d_out_linear_out,
                                       d_fmha_out,
                                       d_out_linear_weight,
                                       nullptr);
L
Li Min 已提交
631

632
    if (qkv_bias != nullptr) {
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
      fmha_ref_compute.ComputeBackward(*transpose_out_2,
                                       src_mask,
                                       *softmax_out,
                                       *attn_dropout_mask_out,
                                       *attn_dropout_out,
                                       *qk_out,
                                       *src_mask_out,
                                       *d_fmha_out,
                                       d_qktv_out,
                                       d_attn_dropout_out,
                                       d_softmax_out,
                                       d_src_mask_out,
                                       d_qk_out,
                                       d_transpose_out_2,
                                       nullptr,
                                       d_qkv_bias_out);
649
    } else {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
      fmha_ref_compute.ComputeBackward(*transpose_out_2,
                                       src_mask,
                                       *softmax_out,
                                       *attn_dropout_mask_out,
                                       *attn_dropout_out,
                                       *qk_out,
                                       *src_mask_out,
                                       *d_fmha_out,
                                       d_qktv_out,
                                       d_attn_dropout_out,
                                       d_softmax_out,
                                       d_src_mask_out,
                                       d_qk_out,
                                       d_transpose_out_2,
                                       nullptr,
                                       d_qkv_out);
666
    }
667 668

    if (pre_layer_norm) {
669 670 671
      auto *ln_mean = ctx.Input<phi::DenseTensor>("LnMean");
      auto *ln_var = ctx.Input<phi::DenseTensor>("LnVariance");
      auto *ln_out = ctx.Input<phi::DenseTensor>("LnOut");
672 673 674 675
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

676 677 678 679 680 681
      auto *d_ln_out =
          ctx.Output<phi::DenseTensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale =
          ctx.Output<phi::DenseTensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias =
          ctx.Output<phi::DenseTensor>(framework::GradVarName("LnBias"));
682 683
      auto *d_ln_out_data =
          dev_ctx.template Alloc<T>(d_ln_out, d_ln_out->numel() * sizeof(T));
684
      auto *d_ln_scale_data =
685 686 687 688
          (d_ln_scale == nullptr
               ? nullptr
               : dev_ctx.template Alloc<U>(d_ln_scale,
                                           d_ln_scale->numel() * sizeof(U)));
689
      auto *d_ln_bias_data =
690 691 692 693
          (d_ln_bias == nullptr
               ? nullptr
               : dev_ctx.template Alloc<U>(d_ln_bias,
                                           d_ln_bias->numel() * sizeof(U)));
694
      if (qkv_bias != nullptr) {
695 696 697 698 699 700
        qkv_compute.ComputeBackward(ln_out,
                                    qkv_weight,
                                    d_qkv_bias_out,
                                    d_ln_out,
                                    d_qkv_weight,
                                    d_qkv_bias);
701
      } else {
702 703
        qkv_compute.ComputeBackward(
            ln_out, qkv_weight, d_qkv_out, d_ln_out, d_qkv_weight, d_qkv_bias);
704
      }
705 706
      // tensor model parallel
      AllReduce<T>(*d_ln_out, ring_id, ctx.cuda_device_context());
707 708 709 710 711 712 713 714
      layer_norm_compute.ComputeBackward(x_data,
                                         d_ln_out_data,
                                         ln_scale_data,
                                         ln_mean_data,
                                         ln_var_data,
                                         d_x_data,
                                         d_ln_scale_data,
                                         d_ln_bias_data);
715
    } else {
716
      if (qkv_bias != nullptr) {
717 718
        qkv_compute.ComputeBackward(
            input_x, qkv_weight, d_qkv_bias_out, d_x, d_qkv_weight, d_qkv_bias);
719
      } else {
720 721
        qkv_compute.ComputeBackward(
            input_x, qkv_weight, d_qkv_out, d_x, d_qkv_weight, d_qkv_bias);
722
      }
723 724
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx.cuda_device_context());
725
    }
726 727 728

    if (add_residual) {
      // gradient accumulation
729 730
      std::vector<const phi::DenseTensor *> ins = {&d_residual, d_x};
      std::vector<phi::DenseTensor *> outs = {d_x};
731 732
      phi::funcs::ElementwiseKernel<T>(
          ctx.cuda_device_context(), ins, &outs, phi::funcs::AddFunctor<T>());
733
    }
734 735 736
  }
};

L
Li Min 已提交
737 738 739 740 741
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
742 743
REGISTER_OP_CUDA_KERNEL(fused_attention,
                        ops::FusedAttentionOpKernel<float>,
L
Li Min 已提交
744 745
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
746 747 748 749
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);