fused_attention_op.cu 25.3 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
#include <cub/cub.cuh>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19 20
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
L
Li Min 已提交
21 22

#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
L
Li Min 已提交
24 25 26 27 28 29

#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"

30 31 32 33 34
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

L
Li Min 已提交
35 36 37 38 39
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename T>
static void AllReduce(framework::Tensor &tensor,  // NOLINT
                      const int ring_id,
                      const platform::CUDADeviceContext &ctx) {
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  auto dtype =
      platform::ToNCCLDataType(framework::TransToProtoVarType(tensor.dtype()));
  int64_t numel = tensor.numel();
  const void *sendbuff = tensor.data<T>();
  auto place = ctx.GetPlace();
  void *recvbuff = tensor.mutable_data<T>(place);
  auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
  auto stream = ctx.stream();
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
      sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

L
Li Min 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");

    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
87 88
    auto *cache_kv = ctx.Input<Tensor>("CacheKV");
    auto *cache_kv_out = ctx.Output<Tensor>("CacheKVOut");
L
Li Min 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
119
    int ring_id = ctx.Attr<int>("ring_id");
L
Li Min 已提交
120 121 122 123 124 125 126 127 128 129

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *qkv_weight_data = qkv_weight->data<T>();
130
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
L
Li Min 已提交
131
    auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
132 133 134
    auto *qkv_bias_out_data =
        (qkv_bias == nullptr) ? nullptr
                              : qkv_bias_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
135 136 137 138

    // get data ptr for FMHA.
    auto *transpose_out_2_data =
        transpose_out_2->mutable_data<T>(ctx.GetPlace());
139 140 141 142
    auto *cache_kv_out_data =
        (cache_kv_out == nullptr)
            ? nullptr
            : cache_kv_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
143 144
    auto *qk_out_data = qk_out->mutable_data<T>(ctx.GetPlace());
    auto *qktv_out_data = qktv_out->mutable_data<T>(ctx.GetPlace());
145 146 147
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : src_mask_out->mutable_data<T>(ctx.GetPlace());
L
Li Min 已提交
148 149 150 151 152 153 154 155 156
    auto *softmax_out_data = softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *attn_dropout_mask_out_data =
        attn_dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *attn_dropout_out_data =
        attn_dropout_out->mutable_data<T>(ctx.GetPlace());
    auto *fmha_out_data = fmha_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
157 158
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
L
Li Min 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for bias+dropout+residual+layernorm
    auto *dropout_mask_out_data =
        dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *final_out_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
180 181 182 183 184

    bool compute_bias = true;
    if (qkv_bias == nullptr) {
      compute_bias = false;
    }
L
Li Min 已提交
185
    // (transA, transB, compute_bias) = (false, true, true)
186 187 188
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, true, bsz_seq,
                      output_size, input_size, compute_bias);
L
Li Min 已提交
189 190 191 192 193 194 195 196 197 198

    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_rate,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
199 200 201 202 203
    // NOTE(Yuang Liu): For general input size == output size, change the
    // position won't have effects. For mp, the output size is mp_head * dkey
    // which is actually the input size. While the input size is hidden size,
    // which is actually the output size. So for out linear, switch the
    // input size and output size.
L
Li Min 已提交
204 205
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, false, bsz_seq,
206
                      input_size, output_size, false);
L
Li Min 已提交
207 208 209 210 211 212
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln_epsilon);

    if (pre_layer_norm) {
L
Li Min 已提交
213 214 215 216 217 218 219
      auto *ln_scale_data =
          (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
      auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
      auto *ln_mean_data = ln_mean->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_data = ln_var->mutable_data<U>(ctx.GetPlace());
      auto *ln_out_data = ln_out->mutable_data<T>(ctx.GetPlace());

L
Li Min 已提交
220 221
      layer_norm_compute.ComputeForward(x_data, ln_scale_data, ln_bias_data,
                                        ln_out_data, ln_mean_data, ln_var_data);
L
Li Min 已提交
222 223
      qkv_compute.ComputeForward(qkv_weight, ln_out, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
224
    } else {
L
Li Min 已提交
225 226
      qkv_compute.ComputeForward(qkv_weight, input_x, qkv_bias, qkv_out,
                                 qkv_bias_out);
L
Li Min 已提交
227
    }
228
    if (qkv_bias == nullptr) {
229 230 231 232
      fmha_ref_compute.ComputeForward(
          *qkv_out, cache_kv, src_mask, transpose_out_2, cache_kv_out, qk_out,
          src_mask_out, softmax_out, attn_dropout_mask_out, attn_dropout_out,
          qktv_out, fmha_out);
233
    } else {
234 235 236 237
      fmha_ref_compute.ComputeForward(
          *qkv_bias_out, cache_kv, src_mask, transpose_out_2, cache_kv_out,
          qk_out, src_mask_out, softmax_out, attn_dropout_mask_out,
          attn_dropout_out, qktv_out, fmha_out);
238
    }
239

L
Li Min 已提交
240 241 242
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
L
Li Min 已提交
243 244
    out_linear_compute.ComputeForward(out_linear_weight, fmha_out, nullptr,
                                      out_linear_out, nullptr);
245 246 247
    // tensor model parallel
    AllReduce<T>(*out_linear_out, ring_id, ctx.cuda_device_context());

L
Li Min 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    if (pre_layer_norm) {
      // output = (residual + dropout(input + bias))
      fused_dropout_layernorm_helper.ResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, final_out_data, dropout_mask_out_data);
    } else {
      auto *ln_scale_2_data =
          (ln_scale_2 == nullptr ? nullptr : ln_scale_2->data<U>());
      auto *ln_bias_2_data =
          (ln_bias_2 == nullptr ? nullptr : ln_bias_2->data<U>());
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());
      auto *ln_mean_2_data = ln_mean_2->mutable_data<U>(ctx.GetPlace());
      auto *ln_var_2_data = ln_var_2->mutable_data<U>(ctx.GetPlace());
      // output = layernorm(residual + dropout(input + bias))
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
          ctx.cuda_device_context(), out_linear_out_data, x_data,
          out_linear_bias_data, ln_scale_2_data, ln_bias_2_data,
          bias_dropout_residual_out_data, dropout_mask_out_data, final_out_data,
          ln_mean_2_data, ln_var_2_data);
    }
L
Li Min 已提交
269 270 271
  }
};

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
template <typename T>
class FusedAttentionGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    const float ln2epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_prob = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");
290
    int ring_id = ctx.Attr<int>("ring_id");
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    // get inputs.
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *d_y_data = d_y->data<T>();

    // fw input
    auto *input_x = ctx.Input<Tensor>("X");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_2_scale = ctx.Input<Tensor>("Ln2Scale");
    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_2_scale_data =
        (ln_2_scale == nullptr ? nullptr : ln_2_scale->data<U>());
    // fw parameters.
    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
    auto *qkv_weight_data = qkv_weight->data<T>();
312
    auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
313
    auto *out_linear_weight_data = out_linear_weight->data<T>();
314 315
    auto *out_linear_bias_data =
        (out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    // fw output
    auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
    auto *transpose_out_2 = ctx.Input<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Input<Tensor>("QKOut");
    auto *qktv_out = ctx.Input<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Input<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Input<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Input<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Input<Tensor>("SrcMaskOut");
    auto *out_linear_out = ctx.Input<Tensor>("OutLinearOut");
    auto *ln_2_mean = ctx.Input<Tensor>("Ln2Mean");
    auto *ln_2_var = ctx.Input<Tensor>("Ln2Variance");
    auto *dropout_mask_out = ctx.Input<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Input<Tensor>("BiasDropoutResidualOut");
    auto *fmha_out_data = fmha_out->data<T>();
    auto *transpose_out_2_data = transpose_out_2->data<T>();
    auto *qk_out_data = qk_out->data<T>();
    auto *qktv_out_data = qktv_out->data<T>();
    auto *softmax_out_data = softmax_out->data<T>();
337 338
    auto *src_mask_out_data =
        (src_mask == nullptr) ? nullptr : src_mask_out->data<T>();
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    auto *out_linear_out_data = out_linear_out->data<T>();
    auto *dropout_mask_out_data = dropout_mask_out->data<uint8_t>();

    // output's grad
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_qkv_out = ctx.Output<Tensor>(framework::GradVarName("QKVOut"));
    auto *d_qkv_bias_out =
        ctx.Output<Tensor>(framework::GradVarName("QKVBiasOut"));
    auto *d_qktv_out = ctx.Output<Tensor>(framework::GradVarName("QKTVOut"));
    auto *d_transpose_out_2 =
        ctx.Output<Tensor>(framework::GradVarName("TransposeOut2"));
    auto *d_qk_out = ctx.Output<Tensor>(framework::GradVarName("QKOut"));
    auto *d_softmax_out =
        ctx.Output<Tensor>(framework::GradVarName("SoftmaxOut"));
    auto *d_attn_dropout_out =
        ctx.Output<Tensor>(framework::GradVarName("AttnDropoutOut"));
    auto *d_src_mask_out =
        ctx.Output<Tensor>(framework::GradVarName("SrcMaskOut"));
    auto *d_fmha_out = ctx.Output<Tensor>(framework::GradVarName("FMHAOut"));
    auto *d_out_linear_out =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearOut"));
    auto *d_bias_dropout_residual_out =
        ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
    auto *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
363 364 365 366 367 368 369 370 371
    // when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
    // space can be reused.
    auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
                               ? nullptr
                               : d_qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_qkv_bias_out_data =
        (d_qkv_bias_out == nullptr)
            ? nullptr
            : d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
372 373 374 375 376 377 378
    auto *d_qktv_out_data = d_qktv_out->mutable_data<T>(ctx.GetPlace());
    auto *d_transpose_out_2_data =
        d_transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *d_qk_out_data = d_qk_out->mutable_data<T>(ctx.GetPlace());
    auto *d_softmax_out_data = d_softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *d_attn_dropout_out_data =
        d_attn_dropout_out->mutable_data<T>(ctx.GetPlace());
379 380 381
    auto *d_src_mask_out_data =
        (src_mask == nullptr) ? nullptr
                              : d_src_mask_out->mutable_data<T>(ctx.GetPlace());
382 383 384 385 386 387 388 389 390 391 392 393 394
    auto *d_fmha_out_data = d_fmha_out->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_out_data =
        d_out_linear_out->mutable_data<T>(ctx.GetPlace());

    // parameter grad
    auto *d_qkv_weight = ctx.Output<Tensor>(framework::GradVarName("QKVW"));
    auto *d_qkv_bias = ctx.Output<Tensor>(framework::GradVarName("QKVBias"));
    auto *d_out_linear_weight =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearW"));
    auto *d_out_linear_bias =
        ctx.Output<Tensor>(framework::GradVarName("OutLinearBias"));
    auto *d_ln_2_scale = ctx.Output<Tensor>(framework::GradVarName("Ln2Scale"));
    auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));
395

396
    auto *d_qkv_weight_data = d_qkv_weight->mutable_data<T>(ctx.GetPlace());
397 398 399
    auto *d_qkv_bias_data = (d_qkv_bias == nullptr)
                                ? nullptr
                                : d_qkv_bias->mutable_data<T>(ctx.GetPlace());
400 401 402
    auto *d_out_linear_weight_data =
        d_out_linear_weight->mutable_data<T>(ctx.GetPlace());
    auto *d_out_linear_bias_data =
403 404 405
        (d_out_linear_bias == nullptr)
            ? nullptr
            : d_out_linear_bias->mutable_data<T>(ctx.GetPlace());
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];
    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    Tensor d_residual;
    d_residual.Resize(input_x_dims);
    T *d_residual_data = d_residual.mutable_data<T>(ctx.GetPlace());

    bool transA = false;
    bool transB = true;
427 428 429 430
    bool compute_qkv_bias = true;
    if (qkv_bias == nullptr) {
      compute_qkv_bias = false;
    }
431 432 433 434
    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    auto qkv_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
435
                      output_size, input_size, compute_qkv_bias);
436 437 438 439 440 441 442 443 444
    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_prob,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);
    output_size = hidden_size;
    transA = false;
    transB = false;
445
    bool compute_bias = false;
446
    // (b*s, num_head * dim_head) * (num_head * dim_head, dim_embed)
447 448
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
449
                      input_size, output_size, compute_bias);
450 451 452 453 454
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln2epsilon);

L
Li Min 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, dropout_mask_out_data,
          d_out_linear_out_data, d_residual_data, d_out_linear_bias_data);
    } else {
      auto *ln_2_mean_data = ln_2_mean->data<U>();
      auto *ln_2_var_data = ln_2_var->data<U>();
      auto *bias_dropout_residual_out_data =
          bias_dropout_residual_out->data<T>();
      auto *d_ln_2_scale_data =
          (d_ln_2_scale == nullptr ? nullptr : d_ln_2_scale->mutable_data<U>(
                                                   ctx.GetPlace()));
      auto *d_ln_2_bias_data =
          (d_ln_2_bias == nullptr ? nullptr : d_ln_2_bias->mutable_data<U>(
                                                  ctx.GetPlace()));
      auto *d_bias_dropout_residual_out_data =
          d_bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());

      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
          ctx.cuda_device_context(), d_y_data, bias_dropout_residual_out_data,
          dropout_mask_out_data, ln_2_scale_data, ln_2_mean_data, ln_2_var_data,
          d_bias_dropout_residual_out_data, d_ln_2_scale_data, d_ln_2_bias_data,
          d_out_linear_out_data, d_out_linear_bias_data, d_residual_data);
    }
479

L
Li Min 已提交
480 481 482 483
    out_linear_compute.ComputeBackward(fmha_out, out_linear_weight,
                                       d_out_linear_out, d_fmha_out,
                                       d_out_linear_weight, nullptr);

484 485 486 487 488 489 490 491 492 493 494 495 496
    if (qkv_bias != nullptr) {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_bias_out);
    } else {
      fmha_ref_compute.ComputeBackward(
          *transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
          *attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
          d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
          d_transpose_out_2, nullptr, d_qkv_out);
    }
497 498

    if (pre_layer_norm) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
      auto *ln_mean = ctx.Input<Tensor>("LnMean");
      auto *ln_var = ctx.Input<Tensor>("LnVariance");
      auto *ln_out = ctx.Input<Tensor>("LnOut");
      auto *ln_mean_data = ln_mean->data<U>();
      auto *ln_var_data = ln_var->data<U>();
      auto *ln_out_data = ln_out->data<T>();

      auto *d_ln_out = ctx.Output<Tensor>(framework::GradVarName("LnOut"));
      auto *d_ln_scale = ctx.Output<Tensor>(framework::GradVarName("LnScale"));
      auto *d_ln_bias = ctx.Output<Tensor>(framework::GradVarName("LnBias"));
      auto *d_ln_out_data = d_ln_out->mutable_data<T>(ctx.GetPlace());
      auto *d_ln_scale_data =
          (d_ln_scale == nullptr ? nullptr
                                 : d_ln_scale->mutable_data<U>(ctx.GetPlace()));
      auto *d_ln_bias_data =
          (d_ln_bias == nullptr ? nullptr
                                : d_ln_bias->mutable_data<U>(ctx.GetPlace()));
516 517 518 519 520 521 522
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out,
                                    d_ln_out, d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_out, d_ln_out,
                                    d_qkv_weight, d_qkv_bias);
      }
523 524
      // tensor model parallel
      AllReduce<T>(*d_ln_out, ring_id, ctx.cuda_device_context());
525 526 527 528
      layer_norm_compute.ComputeBackward(x_data, d_ln_out_data, ln_scale_data,
                                         ln_mean_data, ln_var_data, d_x_data,
                                         d_ln_scale_data, d_ln_bias_data);
    } else {
529 530 531 532 533 534 535
      if (qkv_bias != nullptr) {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      } else {
        qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_out, d_x,
                                    d_qkv_weight, d_qkv_bias);
      }
536 537
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx.cuda_device_context());
538 539 540 541 542 543 544 545
    }
    // gradient accumulation
    std::vector<const Tensor *> ins;
    std::vector<Tensor *> outs;
    ins.emplace_back(&d_residual);
    ins.emplace_back(d_x);
    outs.emplace_back(d_x);
    int elewise_add_axis = -1;
546 547
    paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
                                                   T>(
548 549 550 551 552
        ctx.cuda_device_context(), ins, &outs, elewise_add_axis,
        AddFunctor<T>());
  }
};

L
Li Min 已提交
553 554 555 556 557 558 559 560
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(fused_attention, ops::FusedAttentionOpKernel<float>,
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);
561 562 563 564
REGISTER_OP_CUDA_KERNEL(fused_attention_grad,
                        ops::FusedAttentionGradKernel<float>,
                        ops::FusedAttentionGradKernel<double>,
                        ops::FusedAttentionGradKernel<plat::float16>);