CropOpGpu.cu 3.6 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_base.h"
#include "CropOp.h"

namespace paddle {

__global__ void KeCrop(real* outputs, const real* inputs,
                      int inC, int inH, int inW,
                      int cropC, int cropH, int cropW,
                      int outC, int outH, int outW, int nthreads) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % outW;
    const int h = (idx / outW) % outH;
    const int c = (idx / outW / outH) % outC;
    const int n = idx / outW / outH / outC;

    const int off = ((n * inC + c + cropC) * inH + h + cropH) * inW + cropW + w;
    outputs[idx] = inputs[off];
  }
}

template <>
void Crop<DEVICE_TYPE_GPU>(real* outputs,
                          const real* inputs,
W
wanghaoshuang 已提交
39 40
                          const TensorShape inShape,
                          const TensorShape outShape,
41
                          const FuncConfig& conf) {
W
wanghaoshuang 已提交
42 43
  std::vector<uint32_t> crop_corner =
        conf.get<std::vector<uint32_t>>("crop_corner");
44 45 46
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
47 48 49 50 51 52

  int num = inShape[0];
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

53 54 55 56
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

W
wanghaoshuang 已提交
57 58 59
  size_t nth = num * outC * outH * outW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;
60

W
wanghaoshuang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  KeCrop<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (outputs, inputs, inC, inH, inW, cropC, cropH, cropW,
     outC, outH, outW, nth);
  CHECK_SYNC("Crop");
}

__global__ void KeCropDiff(const real* inGrad, real* outGrad,
                          int inC, int inH, int inW,
                          int cropC, int cropH, int cropW,
                          int outC, int outH, int outW, int nthreads) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % inW;
    const int h = (idx / inW) % inH;
    const int c = (idx / inW / inH) % inC;
    const int n = idx / inW / inH / inC;

W
wanghaoshuang 已提交
78 79
    const int off =
        ((n * outC + c + cropC) * outH + h + cropH) * outW + cropW + w;
80

W
wanghaoshuang 已提交
81 82 83 84 85 86 87
    outGrad[off] += inGrad[idx];
  }
}

template <>
void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
                              real* outGrad,
88
                              const TensorShape inShape,
W
wanghaoshuang 已提交
89
                              const TensorShape outShape,
90
                              const FuncConfig& conf) {
W
wanghaoshuang 已提交
91 92
  std::vector<uint32_t> crop_corner =
        conf.get<std::vector<uint32_t>>("crop_corner");
93 94 95
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
96 97 98 99 100 101

  int num = outShape[0];
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

102 103 104 105
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

W
wanghaoshuang 已提交
106 107 108 109 110 111 112 113 114 115 116
  size_t nth = num * inC * inH * inW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;

  KeCropDiff <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (inGrad, outGrad, inC, inH, inW, cropC, cropH, cropW,
     outC, outH, outW, nth);
  CHECK_SYNC("CropGrad");
}

}  // namespace paddle