CropOpGpu.cu 3.7 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_base.h"
#include "CropOp.h"

namespace paddle {

__global__ void KeCrop(real* outputs, const real* inputs,
                      int inC, int inH, int inW,
                      int cropC, int cropH, int cropW,
                      int outC, int outH, int outW, int nthreads) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % outW;
    const int h = (idx / outW) % outH;
    const int c = (idx / outW / outH) % outC;
    const int n = idx / outW / outH / outC;

    const int off = ((n * inC + c + cropC) * inH + h + cropH) * inW + cropW + w;
    outputs[idx] = inputs[off];
  }
}

template <>
void Crop<DEVICE_TYPE_GPU>(real* outputs,
                          const real* inputs,
						  const TensorShape inShape,
40 41 42 43 44 45
                          const FuncConfig& conf) {
  std::vector<uint32_t> crop_corner = conf.get<std::vector<uint32_t>>("crop_corner");
  std::vector<uint32_t> crop_shape = conf.get<std::vector<uint32_t>>("crop_shape");
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
46 47 48 49 50 51

  int num = inShape[0];
  int inC = inShape[1];
  int inH = inShape[2];
  int inW = inShape[3];

52 53 54
  int outC = crop_shape[1];
  int outH = crop_shape[2];
  int outW = crop_shape[3];
W
wanghaoshuang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  
  size_t nth = num * outC * outH * outW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;
  
  KeCrop<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (outputs, inputs, inC, inH, inW, cropC, cropH, cropW,
     outC, outH, outW, nth);
  CHECK_SYNC("Crop");
}

__global__ void KeCropDiff(const real* inGrad, real* outGrad,
                          int inC, int inH, int inW,
                          int cropC, int cropH, int cropW,
                          int outC, int outH, int outW, int nthreads) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < nthreads) {
    const int w = idx % inW;
    const int h = (idx / inW) % inH;
    const int c = (idx / inW / inH) % inC;
    const int n = idx / inW / inH / inC;

    const int off = ((n * outC + c + cropC) * outH + h + cropH) * outW + cropW + w;
    
    outGrad[off] += inGrad[idx];
  }
}

template <>
void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
                              real* outGrad,
                              const TensorShape outShape,
87 88 89 90 91 92
                              const FuncConfig& conf) {
  std::vector<uint32_t> crop_corner = conf.get<std::vector<uint32_t>>("crop_corner");
  std::vector<uint32_t> crop_shape = conf.get<std::vector<uint32_t>>("crop_shape");
  int cropC = crop_corner[1];
  int cropH = crop_corner[2];
  int cropW = crop_corner[3];
W
wanghaoshuang 已提交
93 94 95 96 97 98

  int num = outShape[0];
  int outC = outShape[1];
  int outH = outShape[2];
  int outW = outShape[3];

99 100 101
  int inC = crop_shape[1];
  int inH = crop_shape[2];
  int inW = crop_shape[3];
W
wanghaoshuang 已提交
102 103 104 105 106 107 108 109 110 111 112 113
  
  size_t nth = num * inC * inH * inW;
  int blockSize = 1024;
  int gridSize = (nth + blockSize - 1) / blockSize;

  KeCropDiff <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
    (inGrad, outGrad, inC, inH, inW, cropC, cropH, cropW,
     outC, outH, outW, nth);
  CHECK_SYNC("CropGrad");
}

}  // namespace paddle