test_logical_op.py 8.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
import paddle
18 19
from paddle.static import Program, program_guard, Executor
from paddle.framework import _non_static_mode
H
hong 已提交
20
from paddle.fluid.framework import _test_eager_guard
21

22
SUPPORTED_DTYPES = [
23 24 25 26 27 28 29
    bool,
    np.int8,
    np.int16,
    np.int32,
    np.int64,
    np.float32,
    np.float64,
30 31
]

32 33 34 35 36 37
TEST_META_OP_DATA = [
    {'op_str': 'logical_and', 'binary_op': True},
    {'op_str': 'logical_or', 'binary_op': True},
    {'op_str': 'logical_xor', 'binary_op': True},
    {'op_str': 'logical_not', 'binary_op': False},
]
38

39
TEST_META_SHAPE_DATA = {
40 41 42 43 44 45 46 47 48 49 50 51 52
    'XDimLargerThanYDim1': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 5]},
    'XDimLargerThanYDim2': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 1]},
    'XDimLargerThanYDim3': {'x_shape': [2, 3, 4, 5], 'y_shape': [1, 4, 1]},
    'XDimLargerThanYDim4': {'x_shape': [2, 3, 4, 5], 'y_shape': [3, 4, 1]},
    'XDimLargerThanYDim5': {'x_shape': [2, 3, 1, 5], 'y_shape': [3, 1, 1]},
    'XDimLessThanYDim1': {'x_shape': [4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim2': {'x_shape': [1, 4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim3': {'x_shape': [3, 4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim4': {'x_shape': [3, 1, 1], 'y_shape': [2, 3, 1, 5]},
    'XDimLessThanYDim5': {'x_shape': [4, 5], 'y_shape': [2, 3, 4, 5]},
    'Axis1InLargerDim': {'x_shape': [1, 4, 5], 'y_shape': [2, 3, 1, 5]},
    'EqualDim1': {'x_shape': [10, 7], 'y_shape': [10, 7]},
    'EqualDim2': {'x_shape': [1, 1, 4, 5], 'y_shape': [2, 3, 1, 5]},
53 54 55
}

TEST_META_WRONG_SHAPE_DATA = {
56 57
    'ErrorDim1': {'x_shape': [2, 3, 4, 5], 'y_shape': [3, 4]},
    'ErrorDim2': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 3]},
58 59 60 61 62
}


def run_static(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    paddle.enable_static()
63 64
    startup_program = Program()
    main_program = Program()
65
    place = paddle.CPUPlace()
66
    if use_gpu and paddle.is_compiled_with_cuda():
67
        place = paddle.CUDAPlace(0)
68 69
    exe = Executor(place)
    with program_guard(main_program, startup_program):
70
        x = paddle.static.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
71 72 73 74 75
        op = getattr(paddle, op_str)
        feed_list = {'x': x_np}
        if not binary_op:
            res = op(x)
        else:
76
            y = paddle.static.data(name='y', shape=y_np.shape, dtype=y_np.dtype)
77 78 79 80 81 82 83 84 85
            feed_list['y'] = y_np
            res = op(x, y)
        exe.run(startup_program)
        static_result = exe.run(main_program, feed=feed_list, fetch_list=[res])
    return static_result


def run_dygraph(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    place = paddle.CPUPlace()
86
    if use_gpu and paddle.is_compiled_with_cuda():
87 88 89
        place = paddle.CUDAPlace(0)
    paddle.disable_static(place)
    op = getattr(paddle, op_str)
90
    x = paddle.to_tensor(x_np, dtype=x_np.dtype)
91 92 93
    if not binary_op:
        dygraph_result = op(x)
    else:
94
        y = paddle.to_tensor(y_np, dtype=y_np.dtype)
95 96 97 98
        dygraph_result = op(x, y)
    return dygraph_result


H
hong 已提交
99 100
def run_eager(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    place = paddle.CPUPlace()
101
    if use_gpu and paddle.is_compiled_with_cuda():
H
hong 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
        place = paddle.CUDAPlace(0)
    paddle.disable_static(place)
    with _test_eager_guard():
        op = getattr(paddle, op_str)
        x = paddle.to_tensor(x_np, dtype=x_np.dtype)
        if not binary_op:
            dygraph_result = op(x)
        else:
            y = paddle.to_tensor(y_np, dtype=y_np.dtype)
            dygraph_result = op(x, y)
        return dygraph_result


115 116 117 118 119
def np_data_generator(np_shape, dtype, *args, **kwargs):
    if dtype == bool:
        return np.random.choice(a=[True, False], size=np_shape).astype(bool)
    else:
        return np.random.randn(*np_shape).astype(dtype)
120 121 122 123 124 125 126 127 128 129 130


def test(unit_test, use_gpu=False, test_error=False):
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        meta_data['use_gpu'] = use_gpu
        np_op = getattr(np, meta_data['op_str'])
        META_DATA = dict(TEST_META_SHAPE_DATA)
        if test_error:
            META_DATA = dict(TEST_META_WRONG_SHAPE_DATA)
        for shape_data in META_DATA.values():
131
            for data_type in SUPPORTED_DTYPES:
132 133 134 135 136 137
                meta_data['x_np'] = np_data_generator(
                    shape_data['x_shape'], dtype=data_type
                )
                meta_data['y_np'] = np_data_generator(
                    shape_data['y_shape'], dtype=data_type
                )
138 139
                if meta_data['binary_op'] and test_error:
                    # catch C++ Exception
140 141 142 143 144 145
                    unit_test.assertRaises(
                        BaseException, run_static, **meta_data
                    )
                    unit_test.assertRaises(
                        BaseException, run_dygraph, **meta_data
                    )
146 147 148
                    continue
                static_result = run_static(**meta_data)
                dygraph_result = run_dygraph(**meta_data)
H
hong 已提交
149
                eager_result = run_eager(**meta_data)
150 151 152 153 154
                if meta_data['binary_op']:
                    np_result = np_op(meta_data['x_np'], meta_data['y_np'])
                else:
                    np_result = np_op(meta_data['x_np'])
                unit_test.assertTrue((static_result == np_result).all())
155
                unit_test.assertTrue(
156 157
                    (dygraph_result.numpy() == np_result).all()
                )
H
hong 已提交
158
                unit_test.assertTrue((eager_result.numpy() == np_result).all())
159 160 161 162 163


def test_type_error(unit_test, use_gpu, type_str_map):
    def check_type(op_str, x, y, binary_op):
        op = getattr(paddle, op_str)
164
        error_type = ValueError
165 166 167 168 169
        if isinstance(x, np.ndarray):
            x = paddle.to_tensor(x)
            y = paddle.to_tensor(y)
            error_type = BaseException
        if binary_op:
170
            if type_str_map['x'] != type_str_map['y']:
171
                unit_test.assertRaises(error_type, op, x=x, y=y)
172
            if not _non_static_mode():
173
                error_type = TypeError
174 175
                unit_test.assertRaises(error_type, op, x=x, y=y, out=1)
        else:
176
            if not _non_static_mode():
177
                error_type = TypeError
178 179 180
                unit_test.assertRaises(error_type, op, x=x, out=1)

    place = paddle.CPUPlace()
181
    if use_gpu and paddle.is_compiled_with_cuda():
182 183 184 185 186 187 188 189 190 191 192 193 194 195
        place = paddle.CUDAPlace(0)
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        binary_op = meta_data['binary_op']

        paddle.disable_static(place)
        x = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['x'])
        y = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['y'])
        check_type(meta_data['op_str'], x, y, binary_op)

        paddle.enable_static()
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
196 197 198 199 200 201
            x = paddle.static.data(
                name='x', shape=[10], dtype=type_str_map['x']
            )
            y = paddle.static.data(
                name='y', shape=[10], dtype=type_str_map['y']
            )
202 203 204 205
            check_type(meta_data['op_str'], x, y, binary_op)


def type_map_factory():
206 207 208 209 210
    return [
        {'x': x_type, 'y': y_type}
        for x_type in SUPPORTED_DTYPES
        for y_type in SUPPORTED_DTYPES
    ]
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237


class TestCPU(unittest.TestCase):
    def test(self):
        test(self)

    def test_error(self):
        test(self, False, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, False, type_map)


class TestCUDA(unittest.TestCase):
    def test(self):
        test(self, True)

    def test_error(self):
        test(self, True, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, True, type_map)

238 239

if __name__ == '__main__':
H
hong 已提交
240
    paddle.enable_static()
241
    unittest.main()