“fd9c78183efad127748e505fc77bf54b02ff977f”上不存在“git@gitcode.net:BaiXuePrincess/Paddle.git”
test_logical_op.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18 19
import unittest
import numpy as np
20
import paddle
21
import paddle.fluid as fluid
22
from paddle.static import Program, program_guard
23

24 25 26 27 28 29 30 31 32 33 34 35 36
TEST_META_OP_DATA = [{
    'op_str': 'logical_and',
    'binary_op': True
}, {
    'op_str': 'logical_or',
    'binary_op': True
}, {
    'op_str': 'logical_xor',
    'binary_op': True
}, {
    'op_str': 'logical_not',
    'binary_op': False
}]
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
TEST_META_SHAPE_DATA = {
    'XDimLargerThanYDim1': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [4, 5]
    },
    'XDimLargerThanYDim2': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [4, 1]
    },
    'XDimLargerThanYDim3': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [1, 4, 1]
    },
    'XDimLargerThanYDim4': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [3, 4, 1]
    },
    'XDimLargerThanYDim5': {
        'x_shape': [2, 3, 1, 5],
        'y_shape': [3, 1, 1]
    },
    'XDimLessThanYDim1': {
        'x_shape': [4, 1],
        'y_shape': [2, 3, 4, 5]
    },
    'XDimLessThanYDim2': {
        'x_shape': [1, 4, 1],
        'y_shape': [2, 3, 4, 5]
    },
    'XDimLessThanYDim3': {
        'x_shape': [3, 4, 1],
        'y_shape': [2, 3, 4, 5]
    },
    'XDimLessThanYDim4': {
        'x_shape': [3, 1, 1],
        'y_shape': [2, 3, 1, 5]
    },
    'XDimLessThanYDim5': {
        'x_shape': [4, 5],
        'y_shape': [2, 3, 4, 5]
    },
    'Axis1InLargerDim': {
        'x_shape': [1, 4, 5],
        'y_shape': [2, 3, 1, 5]
    },
    'EqualDim1': {
        'x_shape': [10, 7],
        'y_shape': [10, 7]
    },
    'EqualDim2': {
        'x_shape': [1, 1, 4, 5],
        'y_shape': [2, 3, 1, 5]
    }
}

TEST_META_WRONG_SHAPE_DATA = {
    'ErrorDim1': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [3, 4]
    },
    'ErrorDim2': {
        'x_shape': [2, 3, 4, 5],
        'y_shape': [4, 3]
    }
}


def run_static(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    paddle.enable_static()
    startup_program = fluid.Program()
    main_program = fluid.Program()
    place = paddle.CPUPlace()
    if use_gpu and fluid.core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    exe = fluid.Executor(place)
    with fluid.program_guard(main_program, startup_program):
        x = paddle.static.data(name='x', shape=x_np.shape, dtype='bool')
        op = getattr(paddle, op_str)
        feed_list = {'x': x_np}
        if not binary_op:
            res = op(x)
        else:
            y = paddle.static.data(name='y', shape=y_np.shape, dtype='bool')
            feed_list['y'] = y_np
            res = op(x, y)
        exe.run(startup_program)
        static_result = exe.run(main_program, feed=feed_list, fetch_list=[res])
    return static_result


def run_dygraph(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    place = paddle.CPUPlace()
    if use_gpu and fluid.core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    paddle.disable_static(place)
    op = getattr(paddle, op_str)
    x = paddle.to_tensor(x_np)
    if not binary_op:
        dygraph_result = op(x)
    else:
        y = paddle.to_tensor(y_np)
        dygraph_result = op(x, y)
    return dygraph_result


def np_data_generator(np_shape, *args, **kwargs):
    return np.random.choice(a=[True, False], size=np_shape).astype(bool)


def test(unit_test, use_gpu=False, test_error=False):
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        meta_data['use_gpu'] = use_gpu
        np_op = getattr(np, meta_data['op_str'])
        META_DATA = dict(TEST_META_SHAPE_DATA)
        if test_error:
            META_DATA = dict(TEST_META_WRONG_SHAPE_DATA)
        for shape_data in META_DATA.values():
            meta_data['x_np'] = np_data_generator(shape_data['x_shape'])
            meta_data['y_np'] = np_data_generator(shape_data['y_shape'])
            if meta_data['binary_op'] and test_error:
                # catch C++ Exception
                unit_test.assertRaises(BaseException, run_static, **meta_data)
                unit_test.assertRaises(BaseException, run_dygraph, **meta_data)
                continue
            static_result = run_static(**meta_data)
            dygraph_result = run_dygraph(**meta_data)
            if meta_data['binary_op']:
                np_result = np_op(meta_data['x_np'], meta_data['y_np'])
167
            else:
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
                np_result = np_op(meta_data['x_np'])
            unit_test.assertTrue((static_result == np_result).all())
            unit_test.assertTrue((dygraph_result.numpy() == np_result).all())


def test_type_error(unit_test, use_gpu, type_str_map):
    def check_type(op_str, x, y, binary_op):
        op = getattr(paddle, op_str)
        error_type = TypeError
        if isinstance(x, np.ndarray):
            x = paddle.to_tensor(x)
            y = paddle.to_tensor(y)
            error_type = BaseException
        if binary_op:
            if type_str_map['x'] != 'bool' or type_str_map['y'] != 'bool':
                unit_test.assertRaises(error_type, op, x=x, y=y)
            if not fluid.in_dygraph_mode():
                unit_test.assertRaises(error_type, op, x=x, y=y, out=1)
        else:
            if type_str_map['x'] != 'bool':
                unit_test.assertRaises(error_type, op, x=x)
            if not fluid.in_dygraph_mode():
                unit_test.assertRaises(error_type, op, x=x, out=1)

    place = paddle.CPUPlace()
    if use_gpu and fluid.core.is_compiled_with_cuda():
        place = paddle.CUDAPlace(0)
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        binary_op = meta_data['binary_op']

        paddle.disable_static(place)
        x = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['x'])
        y = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['y'])
        check_type(meta_data['op_str'], x, y, binary_op)

        paddle.enable_static()
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(
                name='x', shape=[10], dtype=type_str_map['x'])
            y = paddle.static.data(
                name='y', shape=[10], dtype=type_str_map['y'])
            check_type(meta_data['op_str'], x, y, binary_op)


def type_map_factory():
    x_type_list = ['float32', 'float64', 'int32', 'int64', 'bool']
    y_type_list = ['float32', 'float64', 'int32', 'int64', 'bool']
    return [{
        'x': x_type,
        'y': y_type
    } for x_type in x_type_list for y_type in y_type_list]


class TestCPU(unittest.TestCase):
    def test(self):
        test(self)

    def test_error(self):
        test(self, False, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, False, type_map)


class TestCUDA(unittest.TestCase):
    def test(self):
        test(self, True)

    def test_error(self):
        test(self, True, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, True, type_map)

249 250 251

if __name__ == '__main__':
    unittest.main()