conv_miopen_helper.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18 19 20 21

namespace paddle {
namespace operators {

22
using ConvArgs = ConvArgsBase<miopenHandle_t, miopenDataType_t>;
23 24

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
25
static void RemovePaddingSlice(const phi::GPUContext& context,
26 27
                               const Tensor* input,
                               Tensor* out,
28 29
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
30
  auto& place = *context.eigen_device();
31 32 33 34 35 36 37 38 39 40
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
41
    int start = starts[i];
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

template <>
struct SearchAlgorithm<miopenConvFwdAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvFwdAlgorithm_t;

  template <typename T>
64 65 66 67
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
68
                     const phi::GPUContext& ctx) {
69 70
    algo_t algo;

H
hong 已提交
71
    auto workspace_handle = ctx.cudnn_workspace_handle();
72

73 74 75
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
76
      PADDLE_ENFORCE_GPU_SUCCESS(
77
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
78 79 80 81 82 83 84 85 86 87 88 89 90 91
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
92 93
    };

R
ronnywang 已提交
94 95
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
96 97 98 99
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

100
  static size_t GetWorkspaceSize(const ConvArgs& args) {
101
    size_t workspace_size = 0;
102
    PADDLE_ENFORCE_GPU_SUCCESS(
103
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
104 105 106 107 108 109
            args.handle,
            args.wdesc.desc(),
            args.idesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            &workspace_size));
110 111 112 113 114 115 116 117 118 119
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdDataAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdDataAlgorithm_t;

  template <typename T>
120 121 122 123
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
124
                     const phi::GPUContext& ctx) {
125 126
    algo_t algo;

H
hong 已提交
127
    auto workspace_handle = ctx.cudnn_workspace_handle();
128

129 130 131
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
132
      PADDLE_ENFORCE_GPU_SUCCESS(
133
          platform::dynload::miopenFindConvolutionBackwardDataAlgorithm(
134 135 136 137 138 139 140 141 142 143 144 145 146 147
              args.handle,
              args.odesc.desc(),
              args.o->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
148 149
    };

R
ronnywang 已提交
150 151
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.bwd_data_algo;
152 153 154 155
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

156
  static size_t GetWorkspaceSize(const ConvArgs& args) {
157
    size_t workspace_size = 0;
158
    PADDLE_ENFORCE_GPU_SUCCESS(
159
        platform::dynload::miopenConvolutionBackwardDataGetWorkSpaceSize(
160 161 162 163 164 165
            args.handle,
            args.odesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            &workspace_size));
166 167 168 169 170 171 172 173 174 175
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdWeightsAlgorithm_t;

  template <typename T>
176 177 178 179
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
180
                     const phi::GPUContext& ctx) {
181 182
    algo_t algo;

H
hong 已提交
183
    auto workspace_handle = ctx.cudnn_workspace_handle();
184 185 186 187

    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
188
      PADDLE_ENFORCE_GPU_SUCCESS(
189
          platform::dynload::miopenFindConvolutionBackwardWeightsAlgorithm(
190 191 192 193 194 195 196 197 198 199 200 201 202 203
              args.handle,
              args.odesc.desc(),
              args.o->data<T>(),
              args.idesc.desc(),
              args.x->data<T>(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              const_cast<T*>(args.w->data<T>()),
              kNUM_CUDNN_BWD_FILTER_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
204 205
    };

R
ronnywang 已提交
206 207
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.bwd_weights_algo;
208 209 210 211
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

212
  static size_t GetWorkspaceSize(const ConvArgs& args) {
213
    size_t workspace_size = 0;
214
    PADDLE_ENFORCE_GPU_SUCCESS(
215
        platform::dynload::miopenConvolutionBackwardWeightsGetWorkSpaceSize(
216 217 218 219 220 221
            args.handle,
            args.odesc.desc(),
            args.idesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            &workspace_size));
222 223 224 225 226 227
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle