conv_miopen_helper.h 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>

#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/miopen_desc.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

using framework::ConvSearchCache;

struct ConvArgs {
  miopenHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
  miopenDataType_t cudnn_dtype;

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
           const std::vector<int> p, const std::vector<int> d,
           miopenDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
};

template <typename algo_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<miopenConvFwdAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvFwdAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
130
                     bool deterministic, size_t workspace_size,
131 132 133 134 135 136
                     const framework::ExecutionContext& ctx) {
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.x->data<T>(),
              args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
              args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };

    if (!exhaustive_search && !deterministic) {
      workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
      algo = find_result.fwd_algo;
    } else {
      auto& temp = ctx.cuda_device_context();
      AlgorithmsCache<algo_t>& algo_cache =
          *(framework::ConvSearchCache::Instance().GetForward());

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

      VLOG(10) << "miopenConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;

      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
            return find_result.fwd_algo;
          });
    }
171 172 173 174
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

175
  static size_t GetWorkspaceSize(const ConvArgs& args) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
            args.handle, args.wdesc.desc(), args.idesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), &workspace_size));
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdDataAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdDataAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
192
                     bool deterministic, size_t workspace_size,
193 194 195 196 197 198
                     const framework::ExecutionContext& ctx) {
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenFindConvolutionBackwardDataAlgorithm(
              args.handle, args.odesc.desc(), args.o->data<T>(),
              args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
              args.idesc.desc(), const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };

    if (!exhaustive_search && !deterministic) {
      workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
      algo = find_result.bwd_data_algo;
    } else {
      AlgorithmsCache<algo_t>& algo_cache =
          *(framework::ConvSearchCache::Instance().GetBackwardData());

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

      VLOG(10) << "miopenConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;

      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
            return find_result.bwd_data_algo;
          });
    }
232 233 234 235
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

236
  static size_t GetWorkspaceSize(const ConvArgs& args) {
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionBackwardDataGetWorkSpaceSize(
            args.handle, args.odesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), &workspace_size));
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdWeightsAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
253
                     bool deterministic, size_t workspace_size,
254 255 256 257 258
                     const framework::ExecutionContext& ctx) {
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenFindConvolutionBackwardWeightsAlgorithm(
              args.handle, args.odesc.desc(), args.o->data<T>(),
              args.idesc.desc(), args.x->data<T>(), args.cdesc.desc(),
              args.wdesc.desc(), const_cast<T*>(args.w->data<T>()),
              kNUM_CUDNN_BWD_FILTER_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };

    if (!exhaustive_search && !deterministic) {
      workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
      algo = find_result.bwd_weights_algo;
    } else {
      AlgorithmsCache<algo_t>& algo_cache =
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

      VLOG(10) << "miopenConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;

      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
            return find_result.bwd_weights_algo;
          });
    }
293 294 295 296
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

297
  static size_t GetWorkspaceSize(const ConvArgs& args) {
298 299 300 301 302 303 304 305 306 307 308
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionBackwardWeightsGetWorkSpaceSize(
            args.handle, args.odesc.desc(), args.idesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle