huber_loss_op.cc 4.7 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/huber_loss_op.h"

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24 25 26
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
27

28 29
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
30

31 32
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
33 34
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
35
    PADDLE_ENFORCE_EQ(x_dims[1], 1,
36 37
                      "Each row of Input(X) contains a real value, "
                      "so the 2nd dimension of Input(X) must be 1.");
Y
yangyaming 已提交
38

39 40 41
    ctx->SetOutputDim("Residual", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
42 43 44 45 46 47 48 49 50
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HuberLossOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
51 52 53 54 55 56
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
57
    AddOutput("Residual",
58
              "Intermediate tensor to cache residual value between Y and X."
59
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
60
        .AsIntermediate();
61
    AddOutput("Out",
K
kexinzhao 已提交
62 63
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
64 65
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
66 67
HuberLoss Operator.

68 69 70 71
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
72

73
$$
Y
yangyaming 已提交
74
Out_{\delta}(X, Y)_i =
75
\begin{cases}
Y
yangyaming 已提交
76 77 78
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
79
\quad otherwise
80
\end{cases}
81
$$
Y
yangyaming 已提交
82

Y
yangyaming 已提交
83 84 85
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
86 87 88 89 90 91 92 93
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Residual"),
                   "Input(Residual) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto residual_dims = ctx->GetInputDim("Residual");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));

    PADDLE_ENFORCE_EQ(residual_dims, x_dims);
    PADDLE_ENFORCE_EQ(out_grad_dims, x_dims);

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
Y
yangyaming 已提交
118 119 120 121 122 123 124 125 126
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
            huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
127 128 129
REGISTER_OP_CPU_KERNEL(
    huber_loss,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>);
Y
yangyaming 已提交
130 131
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
Q
QI JUN 已提交
132
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>);