huber_loss_op.cc 4.1 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/huber_loss_op.h"

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X must be initialized.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Y must be initialized.");

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    PADDLE_ENFORCE_EQ(x->dims(), y->dims(),
                      "Dimensions of X and Y must be the same.");
    // we constraint shape of X to (N, 1), may expand to (N, x, ...) if needed
    PADDLE_ENFORCE_EQ(framework::arity(x->dims()), 2,
                      "Tensor rank of X must be 2.");
37
    PADDLE_ENFORCE_EQ(x->dims()[1], 1, "2nd dimension of X must be 1.");
Y
yangyaming 已提交
38

39
    ctx.Output<Tensor>("Residual")->Resize(x->dims());
Y
yangyaming 已提交
40 41 42 43 44 45 46 47 48 49 50 51
    ctx.Output<Tensor>("Out")->Resize({x->dims()[0], 1});
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  HuberLossOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input value of HuberLossOp.");
    AddInput("Y", "Target value of HuberLossOp.");
52
    AddOutput("Residual",
Y
yangyaming 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
              "Save residual value between Y and X. "
              "Will be reused in backward.")
        .AsIntermediate();
    AddOutput("Out", "Huber loss between input and target.");
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
Huber loss is a loss function used in robust regression. We constrain shape of
input to (N, 1). The formulation is:

L_delta(y, f(x)) = 0.5 * (y - f(x))^2                  for |y - f(x)| <= delta,
                   delta * (|y - f(x)| - 0.5 * delta)  otherwise.

)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
77
    auto* residual = ctx.Input<Tensor>("Residual");
Y
yangyaming 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));

    PADDLE_ENFORCE_NOT_NULL(x, "Input X must not be null.");
    PADDLE_ENFORCE_NOT_NULL(y, "Target Y must not be null.");
    PADDLE_ENFORCE_NOT_NULL(residual, "Residual value must not be null.");
    PADDLE_ENFORCE_NOT_NULL(out_grad, "Out gradient must not be null.");

    PADDLE_ENFORCE_EQ(residual->dims(), x->dims(),
                      "Dimension of X and residual value must be the same.");
    PADDLE_ENFORCE_EQ(
        out_grad->dims(), x->dims(),
        "Dimension of Out gradient and X must be the same (N*1).");

    if (x_grad) x_grad->Resize(x->dims());
    if (y_grad) y_grad->Resize(y->dims());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
            huber_loss_grad, ops::HuberLossGradOp);
REGISTER_OP_CPU_KERNEL(huber_loss,
                       ops::HuberLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
    ops::HuberLossGradKernel<paddle::platform::CPUPlace, float>);