rank_loss_op.cc 4.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
       http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rank_loss_op.h"

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
28
    // input check
K
kexinzhao 已提交
29 30 31
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
Q
Qiao Longfei 已提交
32 33 34 35 36

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");

Y
Yibing Liu 已提交
37
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
Y
Yibing Liu 已提交
38 39 40 41
                   "All inputs must have the same size.");
    PADDLE_ENFORCE(
        (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensors with shape [batch_size x 1].");
Q
Qiao Longfei 已提交
42
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
43 44 45 46 47 48 49 50
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RankLossOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
51
    AddInput("Label",
Y
Yibing Liu 已提交
52 53 54 55 56 57 58 59 60 61 62
             "(2-D Tensor with shape [batch_size x 1]) "
             "The label indicating A ranked higher than B or not.");
    AddInput("Left",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc A.");
    AddInput("Right",
             "(2-D Tensor with shape [batch_size x 1]) "
             "The output of RankNet for doc B.");
    AddOutput("Out",
              "(2-D Tensor with shape [batch_size x 1]) "
              "The output loss of RankLoss operator.");
K
kexinzhao 已提交
63 64
    AddComment(R"DOC(
RankLoss Operator.
Y
Yibing Liu 已提交
65

K
kexinzhao 已提交
66 67 68
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
RankNet is a pairwise ranking model with
Y
Yibing Liu 已提交
69 70 71 72 73 74
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

K
kexinzhao 已提交
75
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
Y
Yibing Liu 已提交
76 77 78
(P_{i,j}), which represent the output score of RankNet for the two docs and 
the label respectively, and yields the rank loss C_{i,j} using the following 
equation:
Y
Yibing Liu 已提交
79

80 81
$$
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
Y
Yibing Liu 已提交
82 83
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
84
$$
Y
Yibing Liu 已提交
85

Y
Yibing Liu 已提交
86
The operator can take batch inputs with size batch_size (batch_size >= 1).
Y
Yibing Liu 已提交
87

Y
Yibing Liu 已提交
88 89 90 91 92 93 94 95 96 97 98 99
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

100
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx->GetInputDim("Left");
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
      ctx->SetOutputDim(left_grad_name, dims);
Y
Yibing Liu 已提交
112
    }
Q
Qiao Longfei 已提交
113 114 115

    if (ctx->HasOutput(right_grad_name)) {
      ctx->SetOutputDim(right_grad_name, dims);
Y
Yibing Liu 已提交
116
    }
Y
Yibing Liu 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
            ops::RankLossGradOp);
REGISTER_OP_CPU_KERNEL(rank_loss,
                       ops::RankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);