pool_op.h 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
43
  Pool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker);
44 45 46 47
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
48
  Pool3dOpMaker(OpProto* proto, OpAttrChecker* op_checker);
49
};
50

Q
QI JUN 已提交
51
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
52
class PoolKernel : public framework::OpKernel<T> {
53 54
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
55
    const Tensor* in_x = context.Input<Tensor>("X");
56
    Tensor* out = context.Output<Tensor>("Out");
57

C
chengduoZH 已提交
58
    std::string pooling_type = context.Attr<std::string>("pooling_type");
59 60 61
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
62
    if (context.Attr<bool>("global_pooling")) {
63
      for (size_t i = 0; i < ksize.size(); ++i) {
C
fix bug  
chengduoZH 已提交
64
        paddings[i] = 0;
C
chengduoZH 已提交
65
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
66 67
      }
    }
Q
QI JUN 已提交
68
    auto& dev_ctx = context.template device_context<DeviceContext>();
69 70 71
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
72
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
73
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
74
              pool2d_forward;
75
          paddle::operators::math::MaxPool<T> pool_process;
Q
QI JUN 已提交
76 77
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
78

C
chengduoZH 已提交
79
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
80
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
81
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
82
              pool2d_forward;
83
          paddle::operators::math::AvgPool<T> pool_process;
Q
QI JUN 已提交
84 85
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
86 87 88 89
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
90
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
91
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
92
              pool3d_forward;
93
          paddle::operators::math::MaxPool<T> pool_process;
Q
QI JUN 已提交
94 95
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
C
chengduoZH 已提交
96
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
97
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
98
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
99
              pool3d_forward;
100
          paddle::operators::math::AvgPool<T> pool_process;
Q
QI JUN 已提交
101 102
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
                         out);
103 104
        }
      } break;
C
fix bug  
chengduoZH 已提交
105
      default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
106 107 108 109
    }
  }
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
111
class PoolGradKernel : public framework::OpKernel<T> {
112 113
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
114
    const Tensor* in_x = context.Input<Tensor>("X");
115 116 117
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
118
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
119

C
chengduoZH 已提交
120
    std::string pooling_type = context.Attr<std::string>("pooling_type");
121 122 123 124
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
125
    if (context.Attr<bool>("global_pooling")) {
C
fix bug  
chengduoZH 已提交
126 127
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
128
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
C
fix bug  
chengduoZH 已提交
129
      }
130
    }
Q
QI JUN 已提交
131
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
132 133 134
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
      auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
Q
QI JUN 已提交
135 136
      temp.device(
          *context.template device_context<DeviceContext>().eigen_device()) =
137 138 139 140 141
          temp.constant(static_cast<T>(0));

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
142
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
143
                pool2d_backward;
Q
QI JUN 已提交
144 145
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, in_x_grad);
C
chengduoZH 已提交
146
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
147
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
148
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
149
                pool2d_backward;
150
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
151 152
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, pool_process, in_x_grad);
153 154 155 156
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
157
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
158
                pool3d_backward;
Q
QI JUN 已提交
159 160
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, in_x_grad);
C
chengduoZH 已提交
161
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
162
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
163
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
164
                pool3d_backward;
165
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
166 167
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
                            paddings, pool_process, in_x_grad);
168 169
          }
        } break;
C
fix bug  
chengduoZH 已提交
170
        default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
171 172 173 174 175 176 177
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle