test_sparse_utils_op.py 16.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18

19
import paddle
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22

23 24
devices = ['cpu', 'gpu']

25

26 27
class TestSparseCreate(unittest.TestCase):
    def test_create_coo_by_tensor(self):
28 29 30 31 32 33 34 35 36 37 38
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        dense_indices = paddle.to_tensor(indices)
        dense_elements = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(
            dense_indices, dense_elements, dense_shape, stop_gradient=False
        )
        # test the to_string.py
        assert np.array_equal(indices, coo.indices().numpy())
        assert np.array_equal(values, coo.values().numpy())
39

40
    def test_create_coo_by_np(self):
41 42 43 44 45 46 47
        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        assert np.array_equal(3, coo.nnz())
        assert np.array_equal(indices, coo.indices().numpy())
        assert np.array_equal(values, coo.values().numpy())
48

49
    def test_create_csr_by_tensor(self):
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        dense_crows = paddle.to_tensor(crows)
        dense_cols = paddle.to_tensor(cols)
        dense_elements = paddle.to_tensor(values, dtype='float32')
        stop_gradient = False
        csr = paddle.sparse.sparse_csr_tensor(
            dense_crows,
            dense_cols,
            dense_elements,
            dense_shape,
            stop_gradient=stop_gradient,
        )
65

66
    def test_create_csr_by_np(self):
67 68 69 70 71 72 73 74 75 76
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        # test the to_string.py
        assert np.array_equal(5, csr.nnz())
        assert np.array_equal(crows, csr.crows().numpy())
        assert np.array_equal(cols, csr.cols().numpy())
        assert np.array_equal(values, csr.values().numpy())
77 78

    def test_place(self):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        place = core.CPUPlace()
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        dense_shape = [2, 2]
        coo = paddle.sparse.sparse_coo_tensor(
            indices, values, dense_shape, place=place
        )
        assert coo.place.is_cpu_place()
        assert coo.values().place.is_cpu_place()
        assert coo.indices().place.is_cpu_place()

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        csr = paddle.sparse.sparse_csr_tensor(
            crows, cols, values, [3, 5], place=place
        )
        assert csr.place.is_cpu_place()
        assert csr.crows().place.is_cpu_place()
        assert csr.cols().place.is_cpu_place()
        assert csr.values().place.is_cpu_place()
100 101

    def test_dtype(self):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        dense_shape = [2, 2]
        indices = paddle.to_tensor(indices, dtype='int32')
        values = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(
            indices, values, dense_shape, dtype='float64'
        )
        assert coo.dtype == paddle.float64

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        csr = paddle.sparse.sparse_csr_tensor(
            crows, cols, values, [3, 5], dtype='float16'
        )
        assert csr.dtype == paddle.float16
119 120

    def test_create_coo_no_shape(self):
121 122 123 124 125 126
        indices = [[0, 1], [0, 1]]
        values = [1.0, 2.0]
        indices = paddle.to_tensor(indices, dtype='int32')
        values = paddle.to_tensor(values, dtype='float32')
        coo = paddle.sparse.sparse_coo_tensor(indices, values)
        assert [2, 2] == coo.shape
127 128 129


class TestSparseConvert(unittest.TestCase):
130
    def test_to_sparse_coo(self):
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
        out = dense_x.to_sparse_coo(2)
        assert np.array_equal(out.indices().numpy(), indices)
        assert np.array_equal(out.values().numpy(), values)
        # test to_sparse_coo_grad backward
        out_grad_indices = [[0, 1], [0, 1]]
        out_grad_values = [2.0, 3.0]
        out_grad = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(out_grad_indices),
            paddle.to_tensor(out_grad_values),
            shape=out.shape,
            stop_gradient=True,
        )
        out.backward(out_grad)
        assert np.array_equal(dense_x.grad.numpy(), out_grad.to_dense().numpy())
149 150

    def test_coo_to_dense(self):
151
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
152 153 154 155
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        indices_dtypes = ['int32', 'int64']
        for indices_dtype in indices_dtypes:
156
            sparse_x = paddle.sparse.sparse_coo_tensor(
157
                paddle.to_tensor(indices, dtype=indices_dtype),
158 159
                paddle.to_tensor(values),
                shape=[3, 4],
160 161
                stop_gradient=False,
            )
162 163 164 165 166 167
            dense_tensor = sparse_x.to_dense()
            # test to_dense_grad backward
            out_grad = [
                [1.0, 2.0, 3.0, 4.0],
                [5.0, 6.0, 7.0, 8.0],
                [9.0, 10.0, 11.0, 12.0],
168
            ]
169 170 171 172 173 174 175 176 177 178
            dense_tensor.backward(paddle.to_tensor(out_grad))
            # mask the out_grad by sparse_x.indices()
            correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
            assert np.array_equal(
                correct_x_grad, sparse_x.grad.values().numpy()
            )

            paddle.device.set_device("cpu")
            sparse_x_cpu = paddle.sparse.sparse_coo_tensor(
                paddle.to_tensor(indices, dtype=indices_dtype),
179
                paddle.to_tensor(values),
180
                shape=[3, 4],
181 182
                stop_gradient=False,
            )
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            dense_tensor_cpu = sparse_x_cpu.to_dense()
            dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(
                correct_x_grad, sparse_x_cpu.grad.values().numpy()
            )
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})

    def test_to_sparse_csr(self):
        x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_x = paddle.to_tensor(x)
        out = dense_x.to_sparse_csr()
        assert np.array_equal(out.crows().numpy(), crows)
        assert np.array_equal(out.cols().numpy(), cols)
        assert np.array_equal(out.values().numpy(), values)

        dense_tensor = out.to_dense()
        assert np.array_equal(dense_tensor.numpy(), x)

    def test_coo_values_grad(self):
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [1.0, 2.0, 3.0, 4.0, 5.0]
        sparse_x = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(indices),
            paddle.to_tensor(values),
            shape=[3, 4],
            stop_gradient=False,
        )
        values_tensor = sparse_x.values()
        out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
        # test coo_values_grad
        values_tensor.backward(paddle.to_tensor(out_grad))
        assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
        indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
        values = [
            [1.0, 1.0],
            [2.0, 2.0],
            [3.0, 3.0],
            [4.0, 4.0],
            [5.0, 5.0],
        ]
        sparse_x = paddle.sparse.sparse_coo_tensor(
            paddle.to_tensor(indices),
            paddle.to_tensor(values),
            shape=[3, 4, 2],
            stop_gradient=False,
        )
        values_tensor = sparse_x.values()
        out_grad = [
            [2.0, 2.0],
            [3.0, 3.0],
            [5.0, 5.0],
            [8.0, 8.0],
            [9.0, 9.0],
        ]
        # test coo_values_grad
        values_tensor.backward(paddle.to_tensor(out_grad))
        assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
244
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
245

246
    def test_sparse_coo_tensor_grad(self):
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        for device in devices:
            if device == 'cpu' or (
                device == 'gpu' and paddle.is_compiled_with_cuda()
            ):
                paddle.device.set_device(device)
                indices = [[0, 1], [0, 1]]
                values = [1, 2]
                indices = paddle.to_tensor(indices, dtype='int32')
                values = paddle.to_tensor(
                    values, dtype='float32', stop_gradient=False
                )
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=[2, 2], stop_gradient=False
                )
                grad_indices = [[0, 1], [1, 1]]
                grad_values = [2, 3]
                grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                grad_values = paddle.to_tensor(grad_values, dtype='float32')
                sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                    grad_indices, grad_values, shape=[2, 2]
                )
                sparse_x.backward(sparse_out_grad)
                correct_values_grad = [0, 3]
                assert np.array_equal(correct_values_grad, values.grad.numpy())

                # test the non-zero values is a vector
                values = [[1, 1], [2, 2]]
                values = paddle.to_tensor(
                    values, dtype='float32', stop_gradient=False
                )
                sparse_x = paddle.sparse.sparse_coo_tensor(
                    indices, values, shape=[2, 2, 2], stop_gradient=False
                )
                grad_values = [[2, 2], [3, 3]]
                grad_values = paddle.to_tensor(grad_values, dtype='float32')
                sparse_out_grad = paddle.sparse.sparse_coo_tensor(
                    grad_indices, grad_values, shape=[2, 2, 2]
                )
                sparse_x.backward(sparse_out_grad)
                correct_values_grad = [[0, 0], [3, 3]]
                assert np.array_equal(correct_values_grad, values.grad.numpy())
288

289
    def test_sparse_coo_tensor_sorted(self):
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        for device in devices:
            if device == 'cpu' or (
                device == 'gpu' and paddle.is_compiled_with_cuda()
            ):
                paddle.device.set_device(device)
                # test unsorted and duplicate indices
                indices = [[1, 0, 0], [0, 1, 1]]
                values = [1.0, 2.0, 3.0]
                indices = paddle.to_tensor(indices, dtype='int32')
                values = paddle.to_tensor(values, dtype='float32')
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                sparse_x = paddle.sparse.coalesce(sparse_x)
                indices_sorted = [[0, 1], [1, 0]]
                values_sorted = [5.0, 1.0]
                assert np.array_equal(
                    indices_sorted, sparse_x.indices().numpy()
                )
                assert np.array_equal(values_sorted, sparse_x.values().numpy())

                # test the non-zero values is a vector
                values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                values = paddle.to_tensor(values, dtype='float32')
                sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
                sparse_x = paddle.sparse.coalesce(sparse_x)
                values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                assert np.array_equal(
                    indices_sorted, sparse_x.indices().numpy()
                )
                assert np.array_equal(values_sorted, sparse_x.values().numpy())
319

Z
zhangkaihuo 已提交
320
    def test_batch_csr(self):
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        def verify(dense_x):
            sparse_x = dense_x.to_sparse_csr()
            out = sparse_x.to_dense()
            assert np.allclose(out.numpy(), dense_x.numpy())

        shape = np.random.randint(low=1, high=10, size=3)
        shape = list(shape)
        dense_x = paddle.randn(shape)
        dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
        verify(dense_x)

        # test batchs=1
        shape[0] = 1
        dense_x = paddle.randn(shape)
        dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
        verify(dense_x)

        shape = np.random.randint(low=3, high=10, size=3)
        shape = list(shape)
        dense_x = paddle.randn(shape)
        # set the 0th batch to zero
        dense_x[0] = 0
        verify(dense_x)

        dense_x = paddle.randn(shape)
        # set the 1th batch to zero
        dense_x[1] = 0
        verify(dense_x)

        dense_x = paddle.randn(shape)
        # set the 2th batch to zero
        dense_x[2] = 0
        verify(dense_x)
Z
zhangkaihuo 已提交
354

355 356 357

class TestCooError(unittest.TestCase):
    def test_small_shape(self):
358 359 360 361 362 363 364 365
        with self.assertRaises(ValueError):
            indices = [[2, 3], [0, 2]]
            values = [1, 2]
            # 1. the shape too small
            dense_shape = [2, 2]
            sparse_x = paddle.sparse.sparse_coo_tensor(
                indices, values, shape=dense_shape
            )
366 367

    def test_same_nnz(self):
368 369 370 371 372
        with self.assertRaises(ValueError):
            # 2. test the nnz of indices must same as nnz of values
            indices = [[1, 2], [1, 0]]
            values = [1, 2, 3]
            sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
373 374

    def test_same_dimensions(self):
375 376 377 378 379 380 381
        with self.assertRaises(ValueError):
            indices = [[1, 2], [1, 0]]
            values = [1, 2, 3]
            shape = [2, 3, 4]
            sparse_x = paddle.sparse.sparse_coo_tensor(
                indices, values, shape=shape
            )
382 383

    def test_indices_dtype(self):
384 385 386 387
        with self.assertRaises(TypeError):
            indices = [[1.0, 2.0], [0, 1]]
            values = [1, 2]
            sparse_x = paddle.sparse.sparse_coo_tensor(indices, values)
388 389 390 391


class TestCsrError(unittest.TestCase):
    def test_dimension1(self):
392 393 394 395 396 397 398 399
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
400 401

    def test_dimension2(self):
402 403 404 405 406 407 408 409
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3, 3, 3, 3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
410 411

    def test_same_shape1(self):
412 413 414 415 416 417 418 419
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2, 3]
            values = [1, 2, 3]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
420

421
    def test_same_shape2(self):
422 423 424 425 426 427 428 429
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3]
            cols = [0, 1, 2, 3]
            values = [1, 2, 3, 4]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
430 431

    def test_same_shape3(self):
432 433 434 435 436 437 438 439
        with self.assertRaises(ValueError):
            crows = [0, 1, 2, 3, 0, 1, 2]
            cols = [0, 1, 2, 3, 0, 1, 2]
            values = [1, 2, 3, 4, 0, 1, 2]
            shape = [2, 3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
440 441

    def test_crows_first_value(self):
442 443 444 445 446 447 448 449
        with self.assertRaises(ValueError):
            crows = [1, 1, 2, 3]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3, 4]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
450 451

    def test_dtype(self):
452 453 454 455 456 457 458 459
        with self.assertRaises(TypeError):
            crows = [0, 1, 2, 3.0]
            cols = [0, 1, 2]
            values = [1, 2, 3]
            shape = [3]
            sparse_x = paddle.sparse.sparse_csr_tensor(
                crows, cols, values, shape
            )
460

461 462 463

if __name__ == "__main__":
    unittest.main()