data.html 65.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Data Reader Interface and DataSets &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="API" href="../index_en.html"/>
37 38
        <link rel="next" title="Training and Inference" href="run_logic.html"/>
        <link rel="prev" title="Parameter Attribute" href="config/attr.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
133
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a></li>
134 135 136 137
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a><ul class="current">
138 139 140
<li class="toctree-l2"><a class="reference internal" href="model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/layer.html">Layers</a></li>
141
<li class="toctree-l3"><a class="reference internal" href="config/evaluators.html">Evaluators</a></li>
142 143 144 145 146 147
<li class="toctree-l3"><a class="reference internal" href="config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
148
<li class="toctree-l2 current"><a class="current reference internal" href="#">Data Reader Interface and DataSets</a></li>
149
<li class="toctree-l2"><a class="reference internal" href="run_logic.html">Training and Inference</a></li>
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_en.html">API</a> > </li>
      
175
    <li>Data Reader Interface and DataSets</li>
176 177 178 179 180 181 182 183
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
184 185
  <div class="section" id="data-reader-interface-and-datasets">
<h1>Data Reader Interface and DataSets<a class="headerlink" href="#data-reader-interface-and-datasets" title="Permalink to this headline"></a></h1>
186 187
<div class="section" id="datatypes">
<h2>DataTypes<a class="headerlink" href="#datatypes" title="Permalink to this headline"></a></h2>
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_array</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
<dd><p>Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).</p>
<p>For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

220
<dl class="function">
221 222
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
223 224 225 226 227 228 229 230 231
<dd><p>Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).</p>
<p>For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.</p>
232 233 234 235 236 237 238 239 240 241 242 243 244
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
245
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
246 247 248 249 250 251 252
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
253 254
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">dense_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
255 256 257 258 259 260 261 262 263
<dd><p>Data type of a sequence of dense vector.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of dense vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
264
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
265 266 267 268 269 270
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
271 272
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value</code><span class="sig-paren">(</span><em>value_range</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
273 274 275 276 277 278 279 280 281 282 283 284 285 286
<dd><p>Data type of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
<li><strong>value_range</strong> (<em>int</em>) &#8211; range of this integer.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object</p>
</td>
</tr>
287
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
288 289 290 291 292 293 294
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
295 296
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">integer_value_sequence</code><span class="sig-paren">(</span><em>value_range</em><span class="sig-paren">)</span></dt>
297 298 299 300 301 302 303 304 305 306 307 308
<dd><p>Data type of a sequence of integer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>value_range</strong> (<em>int</em>) &#8211; range of each element.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
309 310
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
326
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
327 328 329 330 331 332 333
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
334 335
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_binary_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
336 337 338 339 340 341 342 343 344 345 346 347
<dd><dl class="docutils">
<dt>Data type of a sequence of sparse vector, which every element is either zero</dt>
<dd>or one.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
348
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
349 350 351 352 353 354
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
355 356
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_non_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
<dd><p>Sparse binary vector. It means the input feature is a sparse vector and the
every element in this vector is either zero or one.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
372
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
373 374 375 376 377 378 379
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
380 381
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_value_slot</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
397
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
398 399 400 401 402 403 404
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
405 406
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type=0</em><span class="sig-paren">)</span></dt>
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
<dd><p>Sparse vector. It means the input feature is a sparse vector. Most of the
elements in this vector are zero, others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of this vector.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of this input.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">An input type object.</p>
</td>
</tr>
422
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">InputType</p>
423 424 425 426 427 428 429
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
430 431
<dt>
<code class="descclassname">paddle.v2.data_type.</code><code class="descname">sparse_vector_sequence</code><span class="sig-paren">(</span><em>dim</em><span class="sig-paren">)</span></dt>
432 433 434 435 436 437 438 439 440 441
<dd><p>Data type of a sequence of sparse vector, which most elements are zero,
others could be any float value.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dim</strong> (<em>int</em>) &#8211; dimension of sparse vector.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">An input type object</td>
</tr>
442
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">InputType</td>
443 444 445 446 447 448
</tr>
</tbody>
</table>
</dd></dl>

<dl class="class">
449 450
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_type.</code><code class="descname">InputType</code><span class="sig-paren">(</span><em>dim</em>, <em>seq_type</em>, <em>tp</em><span class="sig-paren">)</span></dt>
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
<dd><p>InputType is the base class for paddle input types.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this is a base class, and should never be used by user.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dim</strong> (<em>int</em>) &#8211; dimension of input. If the input is an integer, it means the
value range. Otherwise, it means the size of layer.</li>
<li><strong>seq_type</strong> (<em>int</em>) &#8211; sequence type of input. 0 means it is not a sequence. 1
means it is a variable length sequence. 2 means it is a
nested sequence.</li>
<li><strong>type</strong> (<em>int</em>) &#8211; data type of input.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
475 476
<div class="section" id="datafeeder">
<h2>DataFeeder<a class="headerlink" href="#datafeeder" title="Permalink to this headline"></a></h2>
477
<dl class="class">
478 479
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.data_feeder.</code><code class="descname">DataFeeder</code><span class="sig-paren">(</span><em>data_types</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
480 481 482 483 484 485
<dd><p>DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.</p>
486 487 488 489 490 491 492 493 494 495 496 497 498
<p>The simple usage shows below</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">feeding</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">]</span>
<span class="n">data_types</span> <span class="o">=</span> <span class="n">enumerate_data_types_of_data_layers</span><span class="p">(</span><span class="n">topology</span><span class="p">)</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">DataFeeder</span><span class="p">(</span><span class="n">data_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">,</span> <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">)</span>

<span class="n">minibatch_data</span> <span class="o">=</span> <span class="p">[([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">,</span> <span class="o">...</span><span class="p">],</span> <span class="mi">5</span><span class="p">)]</span>

<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
</pre></div>
</div>
<p>If mini-batch data and data layers are not one to one mapping, we
could pass a dictionary to feeding parameter to represent the mapping
relationship.</p>
499 500
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data_types</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">dense_vector</span><span class="p">(</span><span class="mi">784</span><span class="p">)),</span>
              <span class="p">(</span><span class="s1">&#39;label&#39;</span><span class="p">,</span> <span class="n">paddle</span><span class="o">.</span><span class="n">data_type</span><span class="o">.</span><span class="n">integer_value</span><span class="p">(</span><span class="mi">10</span><span class="p">))]</span>
501 502
<span class="n">feeding</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;image&#39;</span><span class="p">:</span><span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;label&#39;</span><span class="p">:</span><span class="mi">1</span><span class="p">}</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">DataFeeder</span><span class="p">(</span><span class="n">data_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">,</span> <span class="n">feeding</span><span class="o">=</span><span class="n">feeding</span><span class="p">)</span>
503 504 505 506 507 508 509 510
<span class="n">minibatch_data</span> <span class="o">=</span> <span class="p">[</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">),</span>  <span class="c1"># first sample</span>
                   <span class="p">(</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">2.0</span><span class="p">,</span><span class="mf">3.0</span><span class="p">,</span><span class="mf">4.0</span><span class="p">],</span> <span class="mi">5</span><span class="p">,</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">]</span> <span class="p">)</span>   <span class="c1"># second sample</span>
                 <span class="p">]</span>
<span class="c1"># or minibatch_data = [</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ],  # first sample</span>
<span class="c1">#                       [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ]   # second sample</span>
<span class="c1">#                     ]</span>
511
<span class="n">arg</span> <span class="o">=</span> <span class="n">feeder</span><span class="o">.</span><span class="n">convert</span><span class="p">(</span><span class="n">minibatch_data</span><span class="p">)</span>
512 513 514 515 516 517 518 519 520 521 522 523 524 525
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">This module is for internal use only. Users should use the <cite>reader</cite>
interface.</p>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data_types</strong> (<em>list</em>) &#8211; A list to specify data name and type. Each item is
a tuple of (data_name, data_type).</li>
526 527
<li><strong>feeding</strong> (<em>dict|collections.Sequence|None</em>) &#8211; A dictionary or a sequence to specify the position of each
data in the input data.</li>
528 529 530 531 532 533
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
534 535
<dt>
<code class="descname">convert</code><span class="sig-paren">(</span><em>dat</em>, <em>argument=None</em><span class="sig-paren">)</span></dt>
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>dat</strong> (<em>list</em>) &#8211; A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.</li>
<li><strong>argument</strong> (<em>py_paddle.swig_paddle.Arguments</em>) &#8211; An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
556 557
<div class="section" id="reader">
<h2>Reader<a class="headerlink" href="#reader" title="Permalink to this headline"></a></h2>
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
<p>At training and testing time, PaddlePaddle programs need to read data. To ease
the users&#8217; work to write data reading code, we define that</p>
<ul class="simple">
<li>A <em>reader</em> is a function that reads data (from file, network, random number
generator, etc) and yields data items.</li>
<li>A <em>reader creator</em> is a function that returns a reader function.</li>
<li>A <em>reader decorator</em> is a function, which accepts one or more readers, and
returns a reader.</li>
<li>A <em>batch reader</em> is a function that reads data (from <em>reader</em>, file, network,
random number generator, etc) and yields a batch of data items.</li>
</ul>
<div class="section" id="data-reader-interface">
<h3>Data Reader Interface<a class="headerlink" href="#data-reader-interface" title="Permalink to this headline"></a></h3>
<p>Indeed, <em>data reader</em> doesn&#8217;t have to be a function that reads and yields data
items. It can be any function with no parameter that creates a iterable
(anything can be used in <code class="code docutils literal"><span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">iterable</span></code>):</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">iterable</span> <span class="o">=</span> <span class="n">data_reader</span><span class="p">()</span>
</pre></div>
</div>
<p>Element produced from the iterable should be a <strong>single</strong> entry of data,
<strong>not</strong> a mini batch. That entry of data could be a single item, or a tuple of
items.
Item should be of <a class="reference external" href="http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types">supported type</a> (e.g., numpy 1d
array of float32, int, list of int)</p>
<p>An example implementation for single item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>An example implementation for multiple item data reader creator:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">reader_creator_random_image_and_label</span><span class="p">(</span><span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">label</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">reader</span><span class="p">():</span>
        <span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
            <span class="k">yield</span> <span class="n">numpy</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">),</span> <span class="n">label</span>
<span class="k">return</span> <span class="n">reader</span>
</pre></div>
</div>
<p>TODO(yuyang18): Should we add whole design doc here?</p>
<dl class="function">
600 601
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">map_readers</code><span class="sig-paren">(</span><em>func</em>, <em>*readers</em><span class="sig-paren">)</span></dt>
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
<dd><p>Creates a data reader that outputs return value of function using
output of each data readers as arguments.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>func</strong> &#8211; function to use. The type of func should be (Sample) =&gt; Sample</li>
<li><strong>readers</strong> &#8211; readers whose outputs will be used as arguments of func.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Type:</th><td class="field-body"><p class="first">callable</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the created data reader.</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
628 629
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">buffered</code><span class="sig-paren">(</span><em>reader</em>, <em>size</em><span class="sig-paren">)</span></dt>
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
<dd><p>Creates a buffered data reader.</p>
<p>The buffered data reader will read and save data entries into a
buffer. Reading from the buffered data reader will proceed as long
as the buffer is not empty.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; max buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the buffered data reader.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
652 653
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">compose</code><span class="sig-paren">(</span><em>*readers</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
<dd><p>Creates a data reader whose output is the combination of input readers.</p>
<p>If input readers output following data entries:
(1, 2)    3    (4, 5)
The composed reader will output:
(1, 2, 3, 4, 5)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>readers</strong> &#8211; readers that will be composed together.</li>
<li><strong>check_alignment</strong> (<em>bool</em>) &#8211; if True, will check if input readers are aligned
correctly. If False, will not check alignment and trailing outputs
will be discarded. Defaults to True.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the new data reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><strong>ComposeNotAligned</strong> &#8211; outputs of readers are not aligned.
Will not raise when check_alignment is set to False.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
683 684
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">chain</code><span class="sig-paren">(</span><em>*readers</em><span class="sig-paren">)</span></dt>
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
<dd><p>Creates a data reader whose output is the outputs of input data
readers chained together.</p>
<p>If input readers output following data entries:
[0, 0, 0]
[1, 1, 1]
[2, 2, 2]
The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2]</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>readers</strong> &#8211; input readers.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the new data reader.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
708 709
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">shuffle</code><span class="sig-paren">(</span><em>reader</em>, <em>buf_size</em><span class="sig-paren">)</span></dt>
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
<dd><p>Creates a data reader whose data output is shuffled.</p>
<p>Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the original reader whose output will be shuffled.</li>
<li><strong>buf_size</strong> (<em>int</em>) &#8211; shuffle buffer size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the new reader whose output is shuffled.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
735 736
<dt>
<code class="descclassname">paddle.v2.reader.</code><code class="descname">firstn</code><span class="sig-paren">(</span><em>reader</em>, <em>n</em><span class="sig-paren">)</span></dt>
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
<dd><p>Limit the max number of samples that reader could return.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>n</strong> (<em>int</em>) &#8211; the max number of samples that return.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the decorated reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
759
<p>Creator package contains some simple reader creator, which could be used in user
760 761
program.</p>
<dl class="function">
762 763
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">np_array</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span></dt>
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
<dd><p>Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; the numpy array to create reader from.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">data reader created from x.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
780 781
<dt>
<code class="descclassname">paddle.v2.reader.creator.</code><code class="descname">text_file</code><span class="sig-paren">(</span><em>path</em><span class="sig-paren">)</span></dt>
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
<dd><p>Creates a data reader that outputs text line by line from given text file.
Trailing new line (&#8216;\n&#8217;) of each line will be removed.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Path:</th><td class="field-body">path of the text file.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">data reader of text file</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
797 798
<div class="section" id="minibatch">
<h2>minibatch<a class="headerlink" href="#minibatch" title="Permalink to this headline"></a></h2>
799
<dl class="function">
800 801
<dt>
<code class="descclassname">paddle.v2.minibatch.</code><code class="descname">batch</code><span class="sig-paren">(</span><em>reader</em>, <em>batch_size</em><span class="sig-paren">)</span></dt>
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
<dd><p>Create a batched reader.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>callable</em>) &#8211; the data reader to read from.</li>
<li><strong>batch_size</strong> (<em>int</em>) &#8211; size of each mini-batch</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">the batched reader.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dataset">
<h2>Dataset<a class="headerlink" href="#dataset" title="Permalink to this headline"></a></h2>
826 827 828
<p>Dataset package.</p>
<div class="section" id="mnist">
<h3>mnist<a class="headerlink" href="#mnist" title="Permalink to this headline"></a></h3>
829 830
<p>MNIST dataset.</p>
<p>This module will download dataset from <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a> and
831
parse training set and test set into paddle reader creators.</p>
832
<dl class="function">
833 834
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
835
<dd><p>MNIST training set creator.</p>
836 837 838 839 840 841
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
842
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
843 844 845 846 847 848 849 850
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
851 852
<dt>
<code class="descclassname">paddle.v2.dataset.mnist.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
853
<dd><p>MNIST test set creator.</p>
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
869 870
<div class="section" id="cifar">
<h3>cifar<a class="headerlink" href="#cifar" title="Permalink to this headline"></a></h3>
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
<p>CIFAR dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a> and parse train/test set into
paddle reader creators.</p>
<p>The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test
images.</p>
<p>The CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing
images per class.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-100 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 99].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test100</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
902
<dd><p>CIFAR-100 test set creator.</p>
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">train10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>CIFAR-10 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.cifar.</code><code class="descname">test10</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
938
<dd><p>CIFAR-10 test set creator.</p>
939 940 941 942 943 944 945 946 947 948 949 950 951 952
<p>It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

953 954 955
</div>
<div class="section" id="conll05">
<h3>conll05<a class="headerlink" href="#conll05" title="Permalink to this headline"></a></h3>
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
<p>Conll05 dataset.
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the word, verb and label dictionary of Wikipedia corpus.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">get_embedding</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the trained word vector based on Wikipedia corpus.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.conll05.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Conll05 test set creator.</p>
<p>Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

994 995 996
</div>
<div class="section" id="imdb">
<h3>imdb<a class="headerlink" href="#imdb" title="Permalink to this headline"></a></h3>
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
<p>IMDB dataset.</p>
<p>This module downloads IMDB dataset from
<a class="reference external" href="http://ai.stanford.edu/%7Eamaas/data/sentiment/">http://ai.stanford.edu/%7Eamaas/data/sentiment/</a>. This dataset contains a set
of 25,000 highly polar movie reviews for training, and 25,000 for testing.
Besides, this module also provides API for building dictionary.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>pattern</em>, <em>cutoff</em><span class="sig-paren">)</span></dt>
<dd><p>Build a word dictionary from the corpus. Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB training set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.imdb.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em><span class="sig-paren">)</span></dt>
<dd><p>IMDB test set creator.</p>
<p>It returns a reader creator, each sample in the reader is an zero-based ID
sequence and label in [0, 1].</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1049
</div>
1050 1051
<div class="section" id="imikolov">
<h3>imikolov<a class="headerlink" href="#imikolov" title="Permalink to this headline"></a></h3>
1052 1053 1054 1055 1056 1057
<p>imikolov&#8217;s simple dataset.</p>
<p>This module will download dataset from
<a class="reference external" href="http://www.fit.vutbr.cz/~imikolov/rnnlm/">http://www.fit.vutbr.cz/~imikolov/rnnlm/</a> and parse training set and test set
into paddle reader creators.</p>
<dl class="function">
<dt>
1058
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">build_dict</code><span class="sig-paren">(</span><em>min_word_freq=50</em><span class="sig-paren">)</span></dt>
1059 1060 1061 1062 1063 1064
<dd><p>Build a word dictionary from the corpus,  Keys of the dictionary are words,
and values are zero-based IDs of these words.</p>
</dd></dl>

<dl class="function">
<dt>
1065
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">train</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em>, <em>data_type=1</em><span class="sig-paren">)</span></dt>
1066 1067 1068 1069 1070 1071 1072 1073 1074
<dd><p>imikolov training set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
1075
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size if type is ngram, otherwise max length of sequence</li>
1076
<li><strong>data_type</strong> (<em>member variable of DataType</em><em> (</em><em>NGRAM</em><em> or </em><em>SEQ</em><em>)</em>) &#8211; data type (ngram or sequence)</li>
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Training reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
1092
<code class="descclassname">paddle.v2.dataset.imikolov.</code><code class="descname">test</code><span class="sig-paren">(</span><em>word_idx</em>, <em>n</em>, <em>data_type=1</em><span class="sig-paren">)</span></dt>
1093 1094 1095 1096 1097 1098 1099 1100 1101
<dd><p>imikolov test set creator.</p>
<p>It returns a reader creator, each sample in the reader is a word ID
tuple.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>word_idx</strong> (<em>dict</em>) &#8211; word dictionary</li>
1102
<li><strong>n</strong> (<em>int</em>) &#8211; sliding window size if type is ngram, otherwise max length of sequence</li>
1103
<li><strong>data_type</strong> (<em>member variable of DataType</em><em> (</em><em>NGRAM</em><em> or </em><em>SEQ</em><em>)</em>) &#8211; data type (ngram or sequence)</li>
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Test reader creator</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">callable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1117
</div>
1118 1119
<div class="section" id="movielens">
<h3>movielens<a class="headerlink" href="#movielens" title="Permalink to this headline"></a></h3>
1120
<p>Movielens 1-M dataset.</p>
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
<p>Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
<a class="reference external" href="http://files.grouplens.org/datasets/movielens/ml-1m.zip">http://files.grouplens.org/datasets/movielens/ml-1m.zip</a> and parse training
set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">get_movie_title_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie title dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_movie_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of movie id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_user_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of user id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">max_job_id</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get the maximum value of job id.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_categories</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie categoriges dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">user_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get user info dictionary.</p>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">movie_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>Get movie info dictionary.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">MovieInfo</code><span class="sig-paren">(</span><em>index</em>, <em>categories</em>, <em>title</em><span class="sig-paren">)</span></dt>
<dd><p>Movie id, title and categories information are stored in MovieInfo.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.dataset.movielens.</code><code class="descname">UserInfo</code><span class="sig-paren">(</span><em>index</em>, <em>gender</em>, <em>age</em>, <em>job_id</em><span class="sig-paren">)</span></dt>
<dd><p>User id, gender, age, and job information are stored in UserInfo.</p>
</dd></dl>

1180
</div>
1181 1182
<div class="section" id="sentiment">
<h3>sentiment<a class="headerlink" href="#sentiment" title="Permalink to this headline"></a></h3>
1183 1184 1185
<p>The script fetch and preprocess movie_reviews data set that provided by NLTK</p>
<p>TODO(yuyang18): Complete dataset.</p>
<dl class="function">
1186 1187
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">get_word_dict</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1188 1189 1190 1191 1192 1193 1194
<dd><p>Sorted the words by the frequency of words which occur in sample
:return:</p>
<blockquote>
<div>words_freq_sorted</div></blockquote>
</dd></dl>

<dl class="function">
1195 1196
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1197
<dd><p>Default training set reader creator</p>
1198 1199 1200
</dd></dl>

<dl class="function">
1201 1202
<dt>
<code class="descclassname">paddle.v2.dataset.sentiment.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
1203 1204 1205 1206
<dd><p>Default test set reader creator</p>
</dd></dl>

</div>
1207 1208 1209
<div class="section" id="uci-housing">
<h3>uci_housing<a class="headerlink" href="#uci-housing" title="Permalink to this headline"></a></h3>
<p>UCI Housing dataset.</p>
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
<p>This module will download dataset from
<a class="reference external" href="https://archive.ics.uci.edu/ml/machine-learning-databases/housing/">https://archive.ics.uci.edu/ml/machine-learning-databases/housing/</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">train</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING training set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.uci_housing.</code><code class="descname">test</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>UCI_HOUSING test set creator.</p>
<p>It returns a reader creator, each sample in the reader is features after
normalization and price number.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1249 1250 1251
</div>
<div class="section" id="wmt14">
<h3>wmt14<a class="headerlink" href="#wmt14" title="Permalink to this headline"></a></h3>
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
<p>WMT14 dataset.
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
<a class="reference external" href="http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz">http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz</a> and
parse training set and test set into paddle reader creators.</p>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">train</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 training set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Training reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="function">
<dt>
<code class="descclassname">paddle.v2.dataset.wmt14.</code><code class="descname">test</code><span class="sig-paren">(</span><em>dict_size</em><span class="sig-paren">)</span></dt>
<dd><p>WMT14 test set creator.</p>
<p>It returns a reader creator, each sample in the reader is source language
word ID sequence, target language word ID sequence and next word ID
sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">Test reader creator</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">callable</td>
</tr>
</tbody>
</table>
</dd></dl>

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
1306
        <a href="run_logic.html" class="btn btn-neutral float-right" title="Training and Inference" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
1307 1308
      
      
1309
        <a href="config/attr.html" class="btn btn-neutral" title="Parameter Attribute" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
1343 1344
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
1345 1346 1347 1348 1349
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
1350
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
1364
</html>