Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
340ffbb0
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
340ffbb0
编写于
5月 26, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
1220f385
上级
8077aaa4
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
84 addition
and
8 deletion
+84
-8
develop/doc/api/v2/data.html
develop/doc/api/v2/data.html
+41
-3
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v2/data.html
develop/doc_cn/api/v2/data.html
+41
-3
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v2/data.html
浏览文件 @
340ffbb0
...
...
@@ -185,12 +185,50 @@
<h1>
Data Reader Interface and DataSets
<a
class=
"headerlink"
href=
"#data-reader-interface-and-datasets"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
"datatypes"
>
<h2>
DataTypes
<a
class=
"headerlink"
href=
"#datatypes"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_array
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
dim
</strong>
(
<em>
int
</em>
)
–
dimension of this vector.
</li>
<li><strong>
seq_type
</strong>
(
<em>
int
</em>
)
–
sequence type of input.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
An input type object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
InputType
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_vector
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
</p>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
develop/doc/searchindex.js
浏览文件 @
340ffbb0
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/api/v2/data.html
浏览文件 @
340ffbb0
...
...
@@ -192,12 +192,50 @@
<h1>
Data Reader Interface and DataSets
<a
class=
"headerlink"
href=
"#data-reader-interface-and-datasets"
title=
"永久链接至标题"
>
¶
</a></h1>
<div
class=
"section"
id=
"datatypes"
>
<h2>
DataTypes
<a
class=
"headerlink"
href=
"#datatypes"
title=
"永久链接至标题"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_array
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
dim
</strong>
(
<em>
int
</em>
)
–
dimension of this vector.
</li>
<li><strong>
seq_type
</strong>
(
<em>
int
</em>
)
–
sequence type of input.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
An input type object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
InputType
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_vector
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
</p>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
340ffbb0
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录