jit_kernel_blas.cc 14.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
32
namespace jit = platform::jit;
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
38
  }
T
tensor-tang 已提交
39
}
T
tensor-tang 已提交
40

T
tensor-tang 已提交
41 42 43 44 45 46 47
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
48 49 50 51 52 53 54 55
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
56 57 58 59 60 61 62
template <typename T>
void VScalRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

T
tensor-tang 已提交
63 64 65 66 67 68 69 70
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
71

T
tensor-tang 已提交
72 73 74 75
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);

template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
  if (x == y) {
    platform::dynload::cblas_sscal(n, *a, y, 1);
  } else {
    VScalRefer<float>(a, x, y, n);
  }
}

template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
  if (x == y) {
    platform::dynload::cblas_dscal(n, *a, y, 1);
  } else {
    VScalRefer<double>(a, x, y, n);
  }
}

T
tensor-tang 已提交
111 112
#endif

T
tensor-tang 已提交
113 114 115 116 117 118 119
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

120
/* VMUL JitKernel */
T
tensor-tang 已提交
121 122 123
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
124
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
125
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
126
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
127
    if (useJIT(d)) {
T
tensor-tang 已提交
128 129
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
130
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
T
tensor-tang 已提交
131
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
132 133 134 135
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
136
#endif
T
tensor-tang 已提交
137 138 139 140 141
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
142
#endif
T
tensor-tang 已提交
143 144 145
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
146 147
#ifdef PADDLE_WITH_XBYAK

T
tensor-tang 已提交
148
 private:
T
tensor-tang 已提交
149
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
150
#endif
T
tensor-tang 已提交
151 152
};

T
tensor-tang 已提交
153
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
154 155
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
156
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
157
}
T
tensor-tang 已提交
158
#endif
T
tensor-tang 已提交
159

T
tensor-tang 已提交
160
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
161 162 163 164 165 166 167 168 169
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
170
#endif
T
tensor-tang 已提交
171

T
tensor-tang 已提交
172 173
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
174 175
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
176 177
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
178
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
179 180
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
181
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
T
tensor-tang 已提交
182
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
183 184 185
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
186
    }
T
tensor-tang 已提交
187
#endif
T
tensor-tang 已提交
188 189 190 191 192 193 194
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
195
  }
T
fix mac  
tensor-tang 已提交
196
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
197 198

 private:
T
tensor-tang 已提交
199
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
200
#endif
T
tensor-tang 已提交
201
};
T
tensor-tang 已提交
202

T
tensor-tang 已提交
203
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
204 205
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
206
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
207
}
T
tensor-tang 已提交
208
#endif
T
tensor-tang 已提交
209

T
tensor-tang 已提交
210
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
211 212 213 214
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
215

T
tensor-tang 已提交
216 217 218 219
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
220
#endif
T
tensor-tang 已提交
221

T
tensor-tang 已提交
222 223 224 225 226 227
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
228
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
229 230
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
231
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
T
tensor-tang 已提交
232
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
233 234 235 236
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
237
#endif
T
tensor-tang 已提交
238 239
    this->Compute = VAddReluRefer<T>;
  }
T
fix mac  
tensor-tang 已提交
240
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
241 242

 private:
T
tensor-tang 已提交
243
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
244
#endif
T
tensor-tang 已提交
245 246
};

T
tensor-tang 已提交
247
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
248 249
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
250
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
251
}
T
tensor-tang 已提交
252
#endif
T
tensor-tang 已提交
253

T
tensor-tang 已提交
254 255
/* VScal JitKernel */
template <typename T>
T
tensor-tang 已提交
256 257
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
258 259 260 261 262
  DECLARE_STATIC_FUNC;
  explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
263 264
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
265 266 267
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
268
    }
T
tensor-tang 已提交
269
#endif
T
tensor-tang 已提交
270
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
271 272 273 274
    if (useMKL(d)) {
      this->Compute = VScalMKL<T>;
      return;
    }
T
tensor-tang 已提交
275
#endif
T
tensor-tang 已提交
276
    this->Compute = VScalRefer<T>;
T
tensor-tang 已提交
277
  }
T
tensor-tang 已提交
278
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
279

T
tensor-tang 已提交
280
 private:
T
tensor-tang 已提交
281
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
282
#endif
T
tensor-tang 已提交
283 284 285 286 287
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
288
  return gen::VXXJitCode::init(d, 1);
T
tensor-tang 已提交
289
}
T
tensor-tang 已提交
290
#endif
T
tensor-tang 已提交
291 292 293 294 295 296 297 298 299 300

#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
301 302
#endif

T
tensor-tang 已提交
303 304 305 306 307 308
#undef DECLARE_STATIC_FUNC

REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
309

T
tensor-tang 已提交
310 311 312 313
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
314 315 316
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
317 318 319 320 321
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
322 323 324 325 326 327 328
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
329 330
  }

T
tensor-tang 已提交
331 332 333 334 335 336 337 338 339 340
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
456 457 458 459 460
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
461 462 463 464 465 466 467 468
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
469 470 471
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
472 473 474 475 476

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle