jit_kernel_blas.cc 15.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
36
namespace jit = platform::jit;
T
tensor-tang 已提交
37

T
tensor-tang 已提交
38 39 40 41
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
42
  }
T
tensor-tang 已提交
43
}
T
tensor-tang 已提交
44

T
tensor-tang 已提交
45 46 47 48 49 50 51
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
60 61 62 63 64 65 66 67
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
68

T
tensor-tang 已提交
69 70 71 72
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
86 87
#endif

T
tensor-tang 已提交
88 89 90 91 92 93 94
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

95
/* VMUL JitKernel */
T
tensor-tang 已提交
96 97 98
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
99
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
100
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
101
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
102
    if (useJIT(d)) {
T
tensor-tang 已提交
103 104 105
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VMulJitCode(d, sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
106 107 108 109
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
110
#endif
T
tensor-tang 已提交
111 112 113 114 115
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
116
#endif
T
tensor-tang 已提交
117 118 119
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
120 121
#ifdef PADDLE_WITH_XBYAK

T
tensor-tang 已提交
122
 private:
123
  std::unique_ptr<gen::VMulJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
124
#endif
T
tensor-tang 已提交
125 126
};

T
tensor-tang 已提交
127
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
128 129
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
130
  return gen::VMulJitCode::init(d);
T
tensor-tang 已提交
131
}
T
tensor-tang 已提交
132
#endif
T
tensor-tang 已提交
133

T
tensor-tang 已提交
134
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
135 136 137 138 139 140 141 142 143
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
144
#endif
T
tensor-tang 已提交
145

T
tensor-tang 已提交
146 147
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
148 149
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
150 151 152 153
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
154
      jitcode_.reset(new gen::VAddJitCode(d, false, sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
155 156 157
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
158
    }
T
tensor-tang 已提交
159 160 161 162 163 164 165
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
166
  }
T
tensor-tang 已提交
167 168 169

 private:
  std::unique_ptr<gen::VAddJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
170
};
T
tensor-tang 已提交
171

T
tensor-tang 已提交
172 173 174 175
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
  return gen::VAddJitCode::init(d);
}
T
tensor-tang 已提交
176

T
tensor-tang 已提交
177 178 179 180
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
181

T
tensor-tang 已提交
182 183 184 185
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
186

T
tensor-tang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VAddJitCode(d, true, sz > 4096 ? sz : 4096));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
    this->Compute = VAddReluRefer<T>;
  }

 private:
  std::unique_ptr<gen::VAddJitCode> jitcode_{nullptr};
};

template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
  return gen::VAddJitCode::init(d);
}

T
tensor-tang 已提交
212
#undef DECLARE_STATIC_FUNC
T
tensor-tang 已提交
213

T
tensor-tang 已提交
214 215
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
T
tensor-tang 已提交
216
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
217

T
tensor-tang 已提交
218 219 220 221
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
222 223 224
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
225 226 227
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
228 229
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
230 231 232 233 234 235
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
236 237 238 239 240
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
241 242
  }

T
tensor-tang 已提交
243 244 245 246 247
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
248 249
  }

T
tensor-tang 已提交
250 251
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
252 253
#endif

T
tensor-tang 已提交
254 255 256 257 258 259 260 261 262
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
263
  }
T
tensor-tang 已提交
264 265 266 267 268 269 270 271 272
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
273 274 275
  }

#ifdef __AVX__
T
tensor-tang 已提交
276 277
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
278 279
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
280 281
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
282 283
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
284 285
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
286 287 288
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
289 290 291 292
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
293

T
tensor-tang 已提交
294 295 296 297
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
298 299 300
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
301 302 303 304 305
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
306 307 308 309 310 311 312
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
313 314
  }

T
tensor-tang 已提交
315 316 317 318 319 320 321 322 323 324
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
440 441 442 443 444
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
445 446 447 448 449 450 451 452
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
453 454 455 456
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
457 458 459 460 461

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle