networks.py 52.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

"""
# from activations import *
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
    IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
Y
Yu Yang 已提交
22
    wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
Z
zhangjinchao01 已提交
23 24 25 26
from layers import *  # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *

Q
qijun 已提交
27 28
__all__ = [
    'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
29 30 31 32
    "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
    'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
    'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool',
    'bidirectional_lstm', 'inputs', 'outputs'
Q
qijun 已提交
33
]
Z
zhangjinchao01 已提交
34 35 36 37 38

######################################################
#                     Text CNN                       #
######################################################

Q
qijun 已提交
39

Z
zhangjinchao01 已提交
40 41
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
Q
qijun 已提交
42 43
                       context_len,
                       hidden_size,
Z
zhangjinchao01 已提交
44 45
                       name=None,
                       context_start=None,
Q
qijun 已提交
46 47
                       pool_type=None,
                       context_proj_layer_name=None,
Z
zhangjinchao01 已提交
48 49 50
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
Q
qijun 已提交
51 52
                       fc_bias_attr=None,
                       fc_act=None,
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
    Text convolution pooling layers helper.

    Text input => Context Projection => FC Layer => Pooling => Output.

    :param name: name of output layer(pooling layer name)
    :type name: basestring
    :param input: name of input layer
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
    :param context_start: context projection length. See
                          context_projection's context_start.
    :type context_start: int or None
    :param pool_type: pooling layer type. See pooling_layer's document.
    :type pool_type: BasePoolingType.
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
    :param context_proj_param_attr: context projection parameter attribute.
                                    None if user don't care.
    :type context_proj_param_attr: ParameterAttribute or None.
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
    :type fc_param_attr: ParameterAttribute or None
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
    :type fc_bias_attr: ParameterAttribute or None
    :param fc_act: fc layer activation type. None means tanh
    :type fc_act: BaseActivation
    :param pool_bias_attr: pooling layer bias attr. None if don't care.
                           False if no bias.
    :type pool_bias_attr: ParameterAttribute or None.
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
    :return: output layer name.
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

Q
qijun 已提交
107 108 109 110 111 112 113 114 115 116
    with mixed_layer(
            name=context_proj_layer_name,
            size=input.size * context_len,
            act=LinearActivation(),
            layer_attr=context_attr) as m:
        m += context_projection(
            input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)
Z
zhangjinchao01 已提交
117 118 119

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
Q
qijun 已提交
120 121 122 123 124 125 126 127
    fl = fc_layer(
        name=fc_layer_name,
        input=m,
        size=hidden_size,
        act=fc_act,
        layer_attr=fc_attr,
        param_attr=fc_param_attr,
        bias_attr=fc_bias_attr)
Z
zhangjinchao01 已提交
128

Q
qijun 已提交
129 130 131 132 133 134
    return pooling_layer(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)
Z
zhangjinchao01 已提交
135 136 137 138 139 140 141 142


text_conv_pool = sequence_conv_pool

############################################################################
#                       Images                                             #
############################################################################

Q
qijun 已提交
143

Z
zhangjinchao01 已提交
144
@wrap_name_default("conv_pool")
Q
qijun 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         name=None,
                         pool_type=None,
                         act=None,
                         groups=1,
                         conv_stride=1,
                         conv_padding=0,
                         bias_attr=None,
                         num_channel=None,
                         param_attr=None,
                         shared_bias=True,
                         conv_layer_attr=None,
                         pool_stride=1,
                         pool_padding=0,
                         pool_layer_attr=None):
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    """
    Simple image convolution and pooling group.

    Input => conv => pooling

    :param name: group name
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param filter_size: see img_conv_layer for details
    :type filter_size: int
    :param num_filters: see img_conv_layer for details
    :type num_filters: int
    :param pool_size: see img_pool_layer for details
    :type pool_size: int
    :param pool_type: see img_pool_layer for details
    :type pool_type: BasePoolingType
    :param act: see img_conv_layer for details
    :type act: BaseActivation
    :param groups: see img_conv_layer for details
    :type groups: int
    :param conv_stride: see img_conv_layer for details
    :type conv_stride: int
    :param conv_padding: see img_conv_layer for details
    :type conv_padding: int
    :param bias_attr: see img_conv_layer for details
    :type bias_attr: ParameterAttribute
    :param num_channel: see img_conv_layer for details
    :type num_channel: int
    :param param_attr: see img_conv_layer for details
    :type param_attr: ParameterAttribute
    :param shared_bias: see img_conv_layer for details
    :type shared_bias: bool
    :param conv_layer_attr: see img_conv_layer for details
    :type conv_layer_attr: ExtraLayerAttribute
198
    :param pool_stride: see img_pool_layer for details
Z
zhangjinchao01 已提交
199
    :type pool_stride: int
200
    :param pool_padding: see img_pool_layer for details
Z
zhangjinchao01 已提交
201
    :type pool_padding: int
202
    :param pool_layer_attr: see img_pool_layer for details
Z
zhangjinchao01 已提交
203 204 205 206
    :type pool_layer_attr: ExtraLayerAttribute
    :return: Layer's output
    :rtype: LayerOutput
    """
Q
qijun 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    _conv_ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=act,
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=_conv_,
        pool_size=pool_size,
        pool_type=pool_type,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)
Z
zhangjinchao01 已提交
229 230 231


@wrap_name_default("conv_bn_pool")
Q
qijun 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def img_conv_bn_pool(input,
                     filter_size,
                     num_filters,
                     pool_size,
                     name=None,
                     pool_type=None,
                     act=None,
                     groups=1,
                     conv_stride=1,
                     conv_padding=0,
                     conv_bias_attr=None,
                     num_channel=None,
                     conv_param_attr=None,
                     shared_bias=True,
                     conv_layer_attr=None,
                     bn_param_attr=None,
                     bn_bias_attr=None,
                     bn_layer_attr=None,
                     pool_stride=1,
                     pool_padding=0,
                     pool_layer_attr=None):
Z
zhangjinchao01 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    """
    Convolution, batch normalization, pooling group.

    :param name: group name
    :type name: basestring
    :param input: layer's input
    :type input: LayerOutput
    :param filter_size: see img_conv_layer's document
    :type filter_size: int
    :param num_filters: see img_conv_layer's document
    :type num_filters: int
    :param pool_size: see img_pool_layer's document.
    :type pool_size: int
    :param pool_type: see img_pool_layer's document.
    :type pool_type: BasePoolingType
    :param act: see batch_norm_layer's document.
    :type act: BaseActivation
    :param groups: see img_conv_layer's document
    :type groups: int
    :param conv_stride: see img_conv_layer's document.
    :type conv_stride: int
    :param conv_padding: see img_conv_layer's document.
    :type conv_padding: int
    :param conv_bias_attr: see img_conv_layer's document.
    :type conv_bias_attr: ParameterAttribute
    :param num_channel: see img_conv_layer's document.
    :type num_channel: int
    :param conv_param_attr: see img_conv_layer's document.
    :type conv_param_attr: ParameterAttribute
    :param shared_bias: see img_conv_layer's document.
    :type shared_bias: bool
    :param conv_layer_attr: see img_conv_layer's document.
    :type conv_layer_attr: ExtraLayerOutput
    :param bn_param_attr: see batch_norm_layer's document.
    :type bn_param_attr: ParameterAttribute.
    :param bn_bias_attr: see batch_norm_layer's document.
    :param bn_layer_attr: ParameterAttribute.
    :param pool_stride: see img_pool_layer's document.
    :type pool_stride: int
    :param pool_padding: see img_pool_layer's document.
    :type pool_padding: int
    :param pool_layer_attr: see img_pool_layer's document.
    :type pool_layer_attr: ExtraLayerAttribute
    :return: Layer groups output
    :rtype: LayerOutput
    """
Q
qijun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    __conv__ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=LinearActivation(),
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=conv_bias_attr,
        param_attr=conv_param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    __bn__ = batch_norm_layer(
        name="%s_bn" % name,
        input=__conv__,
        act=act,
        bias_attr=bn_bias_attr,
        param_attr=bn_param_attr,
        layer_attr=bn_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=__bn__,
        pool_type=pool_type,
        pool_size=pool_size,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)


@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
    param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
                   conv_num_filter,
Z
zhangjinchao01 已提交
335 336 337 338 339 340 341 342
                   pool_size,
                   num_channels=None,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=0,
                   pool_stride=1,
Z
zlx 已提交
343 344
                   pool_type=None,
                   param_attr=None):
Z
zhangjinchao01 已提交
345 346 347
    """
    Image Convolution Group, Used for vgg net.

Z
zlx 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    :param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true,
        conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.
    :type conv_batchnorm_drop_rate: list
    :param input: layer's input.
    :type input: LayerOutput
    :param conv_num_filter: output channels num.
    :type conv_num_filter: int
    :param pool_size: pooling filter size.
    :type pool_size: int
    :param num_channels: input channels num.
    :type num_channels: int
    :param conv_padding: convolution padding size.
    :type conv_padding: int
    :param conv_filter_size: convolution filter size.
    :type conv_filter_size: int
    :param conv_act: activation funciton after convolution.
    :type conv_act: BaseActivation
    :param conv_with_batchnorm: conv_with_batchnorm[i] represents
        if there is a batch normalization after each convolution.
    :type conv_with_batchnorm: list
    :param pool_stride: pooling stride size.
    :type pool_stride: int
    :param pool_type: pooling type.
    :type pool_type: BasePoolingType
    :param param_attr: see img_conv_layer for details.
    :type param_attr: ParameterAttribute
    :return: Layer's output
    :type: LayerOutput
Z
zhangjinchao01 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    """
    tmp = input

    # Type checks
    assert isinstance(tmp, LayerOutput)
    assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter,
                                                           tuple)
    for each_num_filter in conv_num_filter:
        assert isinstance(each_num_filter, int)

    assert isinstance(pool_size, int)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_act = __extend_list__(conv_act)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        extra_kwargs = dict()
        if num_channels is not None:
            extra_kwargs['num_channels'] = num_channels
            num_channels = None
        if conv_with_batchnorm[i]:
            extra_kwargs['act'] = LinearActivation()
        else:
            extra_kwargs['act'] = conv_act[i]

Q
qijun 已提交
410 411 412 413 414
        tmp = img_conv_layer(
            input=tmp,
            padding=conv_padding[i],
            filter_size=conv_filter_size[i],
            num_filters=conv_num_filter[i],
Z
zlx 已提交
415
            param_attr=param_attr,
Q
qijun 已提交
416
            **extra_kwargs)
Z
zhangjinchao01 已提交
417 418 419 420 421 422 423 424

        # logger.debug("tmp.num_filters = %d" % tmp.num_filters)

        if conv_with_batchnorm[i]:
            dropout = conv_batchnorm_drop_rate[i]
            if dropout == 0 or abs(dropout) < 1e-5:  # dropout not set
                tmp = batch_norm_layer(input=tmp, act=conv_act[i])
            else:
Q
qijun 已提交
425 426 427 428
                tmp = batch_norm_layer(
                    input=tmp,
                    act=conv_act[i],
                    layer_attr=ExtraAttr(drop_rate=dropout))
Z
zhangjinchao01 已提交
429

Q
qijun 已提交
430 431
    return img_pool_layer(
        input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
Z
zhangjinchao01 已提交
432 433 434 435


def small_vgg(input_image, num_channels, num_classes):
    def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
Q
qijun 已提交
436 437 438 439 440 441 442 443 444 445 446
        return img_conv_group(
            input=ipt,
            num_channels=num_channels_,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * times,
            conv_filter_size=3,
            conv_act=ReluActivation(),
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type=MaxPooling())
Z
zhangjinchao01 已提交
447 448 449 450 451

    tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
    tmp = __vgg__(tmp, 128, 2, [0.4, 0])
    tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
    tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
Q
qijun 已提交
452 453
    tmp = img_pool_layer(
        input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
Z
zhangjinchao01 已提交
454
    tmp = dropout_layer(input=tmp, dropout_rate=0.5)
Q
qijun 已提交
455 456 457 458 459
    tmp = fc_layer(
        input=tmp,
        size=512,
        layer_attr=ExtraAttr(drop_rate=0.5),
        act=LinearActivation())
Z
zhangjinchao01 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    tmp = batch_norm_layer(input=tmp, act=ReluActivation())
    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


def vgg_16_network(input_image, num_channels, num_classes=1000):
    """
    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

    :param num_classes:
    :param input_image:
    :type input_image: LayerOutput
    :param num_channels:
    :type num_channels: int
    :return:
    """

Q
qijun 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    tmp = img_conv_group(
        input=input_image,
        num_channels=num_channels,
        conv_padding=1,
        conv_num_filter=[64, 64],
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_size=2,
        pool_stride=2,
        pool_type=MaxPooling())

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[128, 128],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[256, 256, 256],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)
    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))
Z
zhangjinchao01 已提交
537 538 539 540 541 542 543 544

    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


############################################################################
#                       Recurrent                                          #
############################################################################

Q
qijun 已提交
545

Z
zhangjinchao01 已提交
546
@wrap_name_default("lstm")
Q
qijun 已提交
547 548 549 550 551 552 553 554 555 556 557
def simple_lstm(input,
                size,
                name=None,
                reverse=False,
                mat_param_attr=None,
                bias_param_attr=None,
                inner_param_attr=None,
                act=None,
                gate_act=None,
                state_act=None,
                mixed_layer_attr=None,
Z
zhangjinchao01 已提交
558 559 560 561
                lstm_cell_attr=None):
    """
    Simple LSTM Cell.

L
luotao02 已提交
562
    It just combine a mixed layer with fully_matrix_projection and a lstmemory
Z
zhangjinchao01 已提交
563 564 565 566
    layer. The simple lstm cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
567
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
568

L
luotao02 已提交
569
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
570

L
luotao02 已提交
571
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
572

L
luotao02 已提交
573
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
574

L
luotao02 已提交
575
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
576 577 578 579 580 581 582 583 584 585 586 587

    Please refer **Generating Sequences With Recurrent Neural Networks** if you
    want to know what lstm is. Link_ is here.

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: lstm layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
C
caoying03 已提交
588
    :param reverse: whether to process the input data in a reverse order
Z
zhangjinchao01 已提交
589 590 591 592 593 594 595 596
    :type reverse: bool
    :param mat_param_attr: mixed layer's matrix projection parameter attribute.
    :type mat_param_attr: ParameterAttribute
    :param bias_param_attr: bias parameter attribute. False means no bias, None
                            means default bias.
    :type bias_param_attr: ParameterAttribute|False
    :param inner_param_attr: lstm cell parameter attribute.
    :type inner_param_attr: ParameterAttribute
C
caoying03 已提交
597
    :param act: lstm final activiation type
Z
zhangjinchao01 已提交
598
    :type act: BaseActivation
C
caoying03 已提交
599
    :param gate_act: lstm gate activiation type
Z
zhangjinchao01 已提交
600
    :type gate_act: BaseActivation
C
caoying03 已提交
601
    :param state_act: lstm state activiation type.
Z
zhangjinchao01 已提交
602 603 604 605 606 607 608 609 610
    :type state_act: BaseActivation
    :param mixed_layer_attr: mixed layer's extra attribute.
    :type mixed_layer_attr: ExtraLayerAttribute
    :param lstm_cell_attr: lstm layer's extra attribute.
    :type lstm_cell_attr: ExtraLayerAttribute
    :return: lstm layer name.
    :rtype: LayerOutput
    """
    fc_name = 'lstm_transform_%s' % name
Q
qijun 已提交
611 612 613 614 615 616
    with mixed_layer(
            name=fc_name,
            size=size * 4,
            act=IdentityActivation(),
            layer_attr=mixed_layer_attr,
            bias_attr=False) as m:
Z
zhangjinchao01 已提交
617 618
        m += full_matrix_projection(input, param_attr=mat_param_attr)

Q
qijun 已提交
619 620 621 622 623 624 625 626 627 628
    return lstmemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=bias_param_attr,
        param_attr=inner_param_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
        layer_attr=lstm_cell_attr)
Z
zhangjinchao01 已提交
629 630 631


@wrap_name_default('lstm_unit')
Q
qijun 已提交
632
def lstmemory_unit(input,
633
                   out_memory=None,
Q
qijun 已提交
634 635 636 637 638 639
                   name=None,
                   size=None,
                   param_attr=None,
                   act=None,
                   gate_act=None,
                   state_act=None,
640 641
                   input_proj_bias_attr=None,
                   input_proj_layer_attr=None,
Q
qijun 已提交
642
                   lstm_bias_attr=None,
643
                   lstm_layer_attr=None):
Z
zhangjinchao01 已提交
644
    """
645 646 647
    Define calculations that a LSTM unit performs during a single time step.
    This function itself is not a recurrent layer, so it can not be
    directly used to process sequence inputs. This function is always used in
C
caoying03 已提交
648 649 650 651 652 653 654 655 656
    recurrent_group (see layers.py for more details) to implement attention
    mechanism.

    Please refer to  **Generating Sequences With Recurrent Neural Networks**
    for more details about LSTM. The link goes as follows:
    .. _Link: https://arxiv.org/abs/1308.0850

    ..  math::

657
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
C
caoying03 已提交
658

659
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
C
caoying03 已提交
660

661
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
C
caoying03 已提交
662

663
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
C
caoying03 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676

        h_t & = o_t tanh(c_t)

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_unit(input=[layer1],
                                   size=256,
                                   act=TanhActivation(),
                                   gate_act=SigmoidActivation(),
                                   state_act=TanhActivation())

Z
zhangjinchao01 已提交
677

L
luotao02 已提交
678 679
    :param input: input layer name.
    :type input: LayerOutput
680 681
    :param out_memory: output of previous time step
    :type out_memory: LayerOutput | None
L
luotao02 已提交
682 683 684 685 686 687
    :param name: lstmemory unit name.
    :type name: basestring
    :param size: lstmemory unit size.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
C
caoying03 已提交
688
    :param act: lstm final activiation type
L
luotao02 已提交
689
    :type act: BaseActivation
C
caoying03 已提交
690
    :param gate_act: lstm gate activiation type
L
luotao02 已提交
691
    :type gate_act: BaseActivation
C
caoying03 已提交
692
    :param state_act: lstm state activiation type.
L
luotao02 已提交
693
    :type state_act: BaseActivation
694 695 696 697 698 699
    :param input_proj_bias_attr: bias attribute for input-to-hidden projection.
                False means no bias, None means default bias.
    :type input_proj_bias_attr: ParameterAttribute|False|None
    :param input_proj_layer_attr: extra layer attribute for input to hidden
                projection of the LSTM unit, such as dropout, error clipping.
    :type input_proj_layer_attr: ExtraLayerAttribute
L
luotao02 已提交
700
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
701
                False means no bias, None means default bias.
L
luotao02 已提交
702 703 704 705 706
    :type lstm_bias_attr: ParameterAttribute|False
    :param lstm_layer_attr: lstm layer's extra attribute.
    :type lstm_layer_attr: ExtraLayerAttribute
    :return: lstmemory unit name.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
707 708 709 710
    """
    if size is None:
        assert input.size % 4 == 0
        size = input.size / 4
711 712 713 714 715
    if out_memory is None:
        out_mem = memory(name=name, size=size)
    else:
        out_mem = out_memory

Z
zhangjinchao01 已提交
716 717
    state_mem = memory(name="%s_state" % name, size=size)

Q
qijun 已提交
718 719 720
    with mixed_layer(
            name="%s_input_recurrent" % name,
            size=size * 4,
721 722
            bias_attr=input_proj_bias_attr,
            layer_attr=input_proj_layer_attr,
Q
qijun 已提交
723
            act=IdentityActivation()) as m:
Z
zhangjinchao01 已提交
724 725 726 727 728 729 730 731 732 733 734 735
        m += identity_projection(input=input)
        m += full_matrix_projection(input=out_mem, param_attr=param_attr)

    lstm_out = lstm_step_layer(
        name=name,
        input=m,
        state=state_mem,
        size=size,
        bias_attr=lstm_bias_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
Q
qijun 已提交
736
        layer_attr=lstm_layer_attr)
737
    get_output_layer(name='%s_state' % name, input=lstm_out, arg_name='state')
Z
zhangjinchao01 已提交
738 739 740 741 742

    return lstm_out


@wrap_name_default('lstm_group')
Q
qijun 已提交
743 744 745
def lstmemory_group(input,
                    size=None,
                    name=None,
746
                    out_memory=None,
Q
qijun 已提交
747 748 749 750 751
                    reverse=False,
                    param_attr=None,
                    act=None,
                    gate_act=None,
                    state_act=None,
752 753
                    input_proj_bias_attr=None,
                    input_proj_layer_attr=None,
Q
qijun 已提交
754
                    lstm_bias_attr=None,
755
                    lstm_layer_attr=None):
Z
zhangjinchao01 已提交
756
    """
757
    lstm_group is a recurrent_group version of Long Short Term Memory. It
C
caoying03 已提交
758 759
    does exactly the same calculation as the lstmemory layer (see lstmemory in
    layers.py for the maths) does. A promising benefit is that LSTM memory
760
    cell states, or hidden states in every time step are accessible to the
C
caoying03 已提交
761
    user. This is especially useful in attention model. If you do not need to
762
    access the internal states of the lstm, but merely use its outputs,
763
    it is recommended to use the lstmemory, which is relatively faster than
C
caoying03 已提交
764 765 766 767
    lstmemory_group.

    NOTE: In PaddlePaddle's implementation, the following input-to-hidden
    multiplications:
768 769
    :math:`W_{x_i}x_{t}` , :math:`W_{x_f}x_{t}`,
    :math:`W_{x_c}x_t`, :math:`W_{x_o}x_{t}` are not done in lstmemory_unit to
C
caoying03 已提交
770 771 772 773 774 775 776 777 778 779 780 781
    speed up the calculations. Consequently, an additional mixed_layer with
    full_matrix_projection must be included before lstmemory_unit is called.

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_group(input=[layer1],
                                    size=256,
                                    act=TanhActivation(),
                                    gate_act=SigmoidActivation(),
                                    state_act=TanhActivation())
Z
zhangjinchao01 已提交
782

L
luotao02 已提交
783 784 785 786
    :param input: input layer name.
    :type input: LayerOutput
    :param size: lstmemory group size.
    :type size: int
787
    :param name: name of the lstmemory group.
L
luotao02 已提交
788
    :type name: basestring
789 790
    :param out_memory: output of previous time step
    :type out_memory: LayerOutput | None
L
luotao02 已提交
791 792 793 794
    :param reverse: is lstm reversed
    :type reverse: bool
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
C
caoying03 已提交
795
    :param act: lstm final activiation type
L
luotao02 已提交
796
    :type act: BaseActivation
C
caoying03 已提交
797
    :param gate_act: lstm gate activiation type
L
luotao02 已提交
798
    :type gate_act: BaseActivation
C
caoying03 已提交
799
    :param state_act: lstm state activiation type.
L
luotao02 已提交
800 801 802 803
    :type state_act: BaseActivation
    :param lstm_bias_attr: bias parameter attribute of lstm layer.
                           False means no bias, None means default bias.
    :type lstm_bias_attr: ParameterAttribute|False
804 805 806 807 808 809
    :param input_proj_bias_attr: bias attribute for input-to-hidden projection.
                False means no bias, None means default bias.
    :type input_proj_bias_attr: ParameterAttribute|False|None
    :param input_proj_layer_attr: extra layer attribute for input to hidden
                projection of the LSTM unit, such as dropout, error clipping.
    :type input_proj_layer_attr: ExtraLayerAttribute
L
luotao02 已提交
810 811
    :param lstm_layer_attr: lstm layer's extra attribute.
    :type lstm_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
812
    :return: the lstmemory group.
L
luotao02 已提交
813
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
814 815 816
    """

    def __lstm_step__(ipt):
Q
qijun 已提交
817 818 819 820 821 822 823
        return lstmemory_unit(
            input=ipt,
            name=name,
            size=size,
            act=act,
            gate_act=gate_act,
            state_act=state_act,
824 825 826 827
            out_memory=out_memory,
            input_proj_bias_attr=input_proj_bias_attr,
            input_proj_layer_attr=input_proj_layer_attr,
            param_attr=param_attr,
Q
qijun 已提交
828
            lstm_layer_attr=lstm_layer_attr,
829
            lstm_bias_attr=lstm_bias_attr)
Q
qijun 已提交
830 831 832 833 834 835

    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__lstm_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
836 837 838 839


@wrap_name_default('gru_unit')
def gru_unit(input,
840
             memory_boot=None,
Z
zhangjinchao01 已提交
841 842 843
             size=None,
             name=None,
             gru_bias_attr=None,
W
wangyang59 已提交
844
             gru_param_attr=None,
Z
zhangjinchao01 已提交
845 846
             act=None,
             gate_act=None,
Y
Yu Yang 已提交
847 848
             gru_layer_attr=None,
             naive=False):
Z
zhangjinchao01 已提交
849
    """
C
caoying03 已提交
850
    Define calculations that a gated recurrent unit performs in a single time
851 852
    step. This function itself is not a recurrent layer, so it can not be
    directly used to process sequence inputs. This function is always used in
C
caoying03 已提交
853 854
    the recurrent_group (see layers.py for more details) to implement attention
    mechanism.
Z
zhangjinchao01 已提交
855

C
caoying03 已提交
856 857 858
    Please see grumemory in layers.py for the details about the maths.

    :param input: input layer name.
Z
zhangjinchao01 已提交
859
    :type input: LayerOutput
860 861
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
862 863 864 865 866 867 868 869 870 871 872 873
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param act: type of the activation
    :type act: BaseActivation
    :param gate_act: type of the gate activation
    :type gate_act: BaseActivation
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru output layer.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
874 875 876 877 878 879
    """

    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3

880
    out_mem = memory(name=name, size=size, boot_layer=memory_boot)
Z
zhangjinchao01 已提交
881

Y
Yu Yang 已提交
882 883 884 885 886 887
    if naive:
        __step__ = gru_step_naive_layer
    else:
        __step__ = gru_step_layer

    gru_out = __step__(
Z
zhangjinchao01 已提交
888 889 890 891 892
        name=name,
        input=input,
        output_mem=out_mem,
        size=size,
        bias_attr=gru_bias_attr,
W
wangyang59 已提交
893
        param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
894 895
        act=act,
        gate_act=gate_act,
Q
qijun 已提交
896
        layer_attr=gru_layer_attr)
Z
zhangjinchao01 已提交
897 898 899 900 901
    return gru_out


@wrap_name_default('gru_group')
def gru_group(input,
902
              memory_boot=None,
Z
zhangjinchao01 已提交
903 904 905 906
              size=None,
              name=None,
              reverse=False,
              gru_bias_attr=None,
W
wangyang59 已提交
907
              gru_param_attr=None,
Q
qijun 已提交
908 909
              act=None,
              gate_act=None,
Y
Yu Yang 已提交
910 911
              gru_layer_attr=None,
              naive=False):
C
caoying03 已提交
912
    """
913
    gru_group is a recurrent_group version of Gated Recurrent Unit. It
C
caoying03 已提交
914
    does exactly the same calculation as the grumemory layer does. A promising
915 916 917
    benefit is that gru hidden states are accessible to the user. This is
    especially useful in attention model. If you do not need to access
    any internal state, but merely use the outputs of a GRU, it is recommended
C
caoying03 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    to use the grumemory, which is relatively faster.

    Please see grumemory in layers.py for more detail about the maths.

    The example usage is:

    ..  code-block:: python

        gru = gur_group(input=[layer1],
                        size=256,
                        act=TanhActivation(),
                        gate_act=SigmoidActivation())

    :param input: input layer name.
    :type input: LayerOutput
933 934
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """

Z
zhangjinchao01 已提交
953 954 955
    def __gru_step__(ipt):
        return gru_unit(
            input=ipt,
956
            memory_boot=memory_boot,
Z
zhangjinchao01 已提交
957 958 959
            name=name,
            size=size,
            gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
960
            gru_param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
961 962
            act=act,
            gate_act=gate_act,
Y
Yu Yang 已提交
963 964
            gru_layer_attr=gru_layer_attr,
            naive=naive)
Z
zhangjinchao01 已提交
965

Q
qijun 已提交
966 967 968 969 970
    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__gru_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
971 972 973 974 975 976 977 978 979 980 981


@wrap_name_default('simple_gru')
def simple_gru(input,
               size,
               name=None,
               reverse=False,
               mixed_param_attr=None,
               mixed_bias_param_attr=None,
               mixed_layer_attr=None,
               gru_bias_attr=None,
W
wangyang59 已提交
982
               gru_param_attr=None,
Z
zhangjinchao01 已提交
983 984
               act=None,
               gate_act=None,
Y
Yu Yang 已提交
985 986
               gru_layer_attr=None,
               naive=False):
C
caoying03 已提交
987
    """
988 989 990 991 992 993
    You maybe see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
    simple_gru in network.py. The reason why there are so many interfaces is
    that we have two ways to implement recurrent neural network. One way is to
    use one complete layer to implement rnn (including simple rnn, gru and lstm)
    with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But,
    the multiplication operation :math:`W x_t` is not computed in these layers.
994
    See details in their interfaces in layers.py.
995 996 997 998 999 1000
    The other implementation is to use an recurrent group which can ensemble a
    series of layers to compute rnn step by step. This way is flexible for
    attenion mechanism or other complex connections.

    - gru_step_layer: only compute rnn by one step. It needs an memory as input
      and can be used in recurrent group.
1001
    - gru_unit: a wrapper of gru_step_layer with memory.
1002 1003
    - gru_group: a GRU cell implemented by a combination of multiple layers in
      recurrent group.
1004
      But :math:`W x_t` is not done in group.
1005
    - gru_memory: a GRU cell implemented by one layer, which does same calculation
1006 1007
      with gru_group and is faster than gru_group.
    - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and
1008
      gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see
1009
      formula in grumemory.
1010

C
caoying03 已提交
1011 1012 1013 1014 1015 1016 1017
    The computational speed is that, grumemory is relatively better than
    gru_group, and gru_group is relatively better than simple_gru.

    The example usage is:

    ..  code-block:: python

1018
        gru = simple_gru(input=[layer1], size=256)
C
caoying03 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

    :param input: input layer name.
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1039 1040 1041 1042 1043
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_param_attr,
            layer_attr=mixed_layer_attr) as m:
Z
zhangjinchao01 已提交
1044 1045
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1046 1047 1048 1049 1050 1051
    return gru_group(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1052
        gru_param_attr=gru_param_attr,
Q
qijun 已提交
1053 1054
        act=act,
        gate_act=gate_act,
Y
Yu Yang 已提交
1055 1056
        gru_layer_attr=gru_layer_attr,
        naive=naive)
Z
zhangjinchao01 已提交
1057 1058


1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
@wrap_name_default('simple_gru2')
def simple_gru2(input,
                size,
                name=None,
                reverse=False,
                mixed_param_attr=None,
                mixed_bias_attr=None,
                gru_param_attr=None,
                gru_bias_attr=None,
                act=None,
                gate_act=None,
                mixed_layer_attr=None,
Q
qijun 已提交
1071
                gru_cell_attr=None):
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    """
    simple_gru2 is the same with simple_gru, but using grumemory instead
    Please see grumemory in layers.py for more detail about the maths.
    simple_gru2 is faster than simple_gru.

    The example usage is:

    ..  code-block:: python

        gru = simple_gru2(input=[layer1], size=256)

    :param input: input layer name.
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
    :param reverse: whether to process the input data in a reverse order
    :type reverse: bool
    :param act: type of the activiation
    :type act: BaseActivation
    :param gate_act: type of the gate activiation
    :type gate_act: BaseActivation
    :param gru_bias_attr: bias. False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False
    :param gru_layer_attr: Extra parameter attribute of the gru layer.
    :type gru_layer_attr: ParameterAttribute|False
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1102 1103 1104 1105 1106
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr) as m:
1107 1108
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117
    return grumemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=gru_bias_attr,
        param_attr=gru_param_attr,
        act=act,
        gate_act=gate_act,
        layer_attr=gru_cell_attr)
1118 1119 1120


@wrap_name_default("bidirectional_gru")
Q
qijun 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
def bidirectional_gru(input,
                      size,
                      name=None,
                      return_seq=False,
                      fwd_mixed_param_attr=None,
                      fwd_mixed_bias_attr=None,
                      fwd_gru_param_attr=None,
                      fwd_gru_bias_attr=None,
                      fwd_act=None,
                      fwd_gate_act=None,
                      fwd_mixed_layer_attr=None,
                      fwd_gru_cell_attr=None,
                      bwd_mixed_param_attr=None,
                      bwd_mixed_bias_attr=None,
                      bwd_gru_param_attr=None,
                      bwd_gru_bias_attr=None,
                      bwd_act=None,
                      bwd_gate_act=None,
                      bwd_mixed_layer_attr=None,
                      bwd_gru_cell_attr=None,
                      last_seq_attr=None,
                      first_seq_attr=None,
                      concat_attr=None,
                      concat_act=None):
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    """
    A bidirectional_gru is a recurrent unit that iterates over the input
    sequence both in forward and bardward orders, and then concatenate two
    outputs to form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    The example usage is:

    ..  code-block:: python

        bi_gru = bidirectional_gru(input=[input1], size=512)

    :param name: bidirectional gru layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: gru layer size.
    :type size: int
    :param return_seq: If set False, outputs of the last time step are
                       concatenated and returned.
                       If set True, the entire output sequences that are
                       processed in forward and backward directions are
                       concatenated and returned.
    :type return_seq: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1175 1176 1177 1178 1179 1180
    fw = simple_gru2(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
1181

Q
qijun 已提交
1182 1183 1184 1185 1186 1187 1188
    bw = simple_gru2(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
1189 1190

    if return_seq:
Q
qijun 已提交
1191 1192
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
1193
    else:
Q
qijun 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
1203 1204


Z
zhangjinchao01 已提交
1205
@wrap_name_default("bidirectional_lstm")
Q
qijun 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
def bidirectional_lstm(input,
                       size,
                       name=None,
                       return_seq=False,
                       fwd_mat_param_attr=None,
                       fwd_bias_param_attr=None,
                       fwd_inner_param_attr=None,
                       fwd_act=None,
                       fwd_gate_act=None,
                       fwd_state_act=None,
                       fwd_mixed_layer_attr=None,
                       fwd_lstm_cell_attr=None,
                       bwd_mat_param_attr=None,
                       bwd_bias_param_attr=None,
                       bwd_inner_param_attr=None,
                       bwd_act=None,
                       bwd_gate_act=None,
                       bwd_state_act=None,
                       bwd_mixed_layer_attr=None,
                       bwd_lstm_cell_attr=None,
                       last_seq_attr=None,
                       first_seq_attr=None,
                       concat_attr=None,
                       concat_act=None):
Z
zhangjinchao01 已提交
1230
    """
C
caoying03 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    A bidirectional_lstm is a recurrent unit that iterates over the input
    sequence both in forward and bardward orders, and then concatenate two
    outputs form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    Please refer to  **Neural Machine Translation by Jointly Learning to Align
    and Translate** for more details about the bidirectional lstm.
    The link goes as follows:
    .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    The example usage is:

    ..  code-block:: python

1246
        bi_lstm = bidirectional_lstm(input=[input1], size=512)
Z
zhangjinchao01 已提交
1247 1248 1249 1250 1251 1252 1253

    :param name: bidirectional lstm layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
C
caoying03 已提交
1254 1255 1256 1257 1258
    :param return_seq: If set False, outputs of the last time step are
                       concatenated and returned.
                       If set True, the entire output sequences that are
                       processed in forward and backward directions are
                       concatenated and returned.
Z
zhangjinchao01 已提交
1259
    :type return_seq: bool
1260
    :return: LayerOutput object accroding to the return_seq.
Z
zhangjinchao01 已提交
1261 1262 1263 1264
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1265 1266 1267 1268 1269 1270
    fw = simple_lstm(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
Z
zhangjinchao01 已提交
1271

Q
qijun 已提交
1272 1273 1274 1275 1276 1277 1278
    bw = simple_lstm(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
Z
zhangjinchao01 已提交
1279 1280

    if return_seq:
Q
qijun 已提交
1281 1282
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
Z
zhangjinchao01 已提交
1283
    else:
Q
qijun 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
Z
zhangjinchao01 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305


@wrap_name_default()
@wrap_act_default(param_names=['weight_act'], act=TanhActivation())
def simple_attention(encoded_sequence,
                     encoded_proj,
                     decoder_state,
                     transform_param_attr=None,
                     softmax_param_attr=None,
                     weight_act=None,
                     name=None):
    """
    Calculate and then return a context vector by attention machanism.
1306
    Size of the context vector equals to size of the encoded_sequence.
Z
zhangjinchao01 已提交
1307 1308

    ..  math::
L
luotao02 已提交
1309 1310 1311 1312 1313

        a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})

        e_{i,j} & = a(s_{i-1}, h_{j})

1314
        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}
L
luotao02 已提交
1315 1316

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j}
Z
zhangjinchao01 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

    where :math:`h_{j}` is the jth element of encoded_sequence,
    :math:`U_{a}h_{j}` is the jth element of encoded_proj
    :math:`s_{i-1}` is decoder_state
    :math:`f` is weight_act, and is set to tanh by default.

    Please refer to **Neural Machine Translation by Jointly Learning to
    Align and Translate** for more details. The link is as follows:
    https://arxiv.org/abs/1409.0473.

    The example usage is:
L
luotao02 已提交
1328

Z
zhangjinchao01 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    ..  code-block:: python

        context = simple_attention(encoded_sequence=enc_seq,
                                   encoded_proj=enc_proj,
                                   decoder_state=decoder_prev,)

    :param name: name of the attention model.
    :type name: basestring
    :param softmax_param_attr: parameter attribute of sequence softmax
                               that is used to produce attention weight
    :type softmax_param_attr: ParameterAttribute
    :param weight_act: activation of the attention model
    :type weight_act: Activation
    :param encoded_sequence: output of the encoder
    :type encoded_sequence: LayerOutput
    :param encoded_proj: attention weight is computed by a feed forward neural
                         network which has two inputs : decoder's hidden state
                         of previous time step and encoder's output.
                         encoded_proj is output of the feed-forward network for
                         encoder's output. Here we pre-compute it outside
                         simple_attention for speed consideration.
    :type encoded_proj: LayerOutput
    :param decoder_state: hidden state of decoder in previous time step
    :type decoder_state: LayerOutput
    :param transform_param_attr: parameter attribute of the feed-forward
                                network that takes decoder_state as inputs to
                                compute attention weight.
    :type transform_param_attr: ParameterAttribute
    :return: a context vector
    """
    assert encoded_proj.size == decoder_state.size
    proj_size = encoded_proj.size

    with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
Q
qijun 已提交
1363 1364
        m += full_matrix_projection(
            decoder_state, param_attr=transform_param_attr)
Z
zhangjinchao01 已提交
1365

Q
qijun 已提交
1366 1367
    expanded = expand_layer(
        input=m, expand_as=encoded_sequence, name='%s_expand' % name)
Z
zhangjinchao01 已提交
1368

Q
qijun 已提交
1369 1370
    with mixed_layer(
            size=proj_size, act=weight_act, name="%s_combine" % name) as m:
Z
zhangjinchao01 已提交
1371 1372 1373 1374 1375
        m += identity_projection(expanded)
        m += identity_projection(encoded_proj)

    # sequence softmax is used to normalize similarities between decoder state
    # and encoder outputs into a distribution
Q
qijun 已提交
1376 1377 1378 1379 1380 1381 1382
    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)
Z
zhangjinchao01 已提交
1383

Q
qijun 已提交
1384 1385 1386 1387
    scaled = scaling_layer(
        weight=attention_weight,
        input=encoded_sequence,
        name='%s_scaling' % name)
Z
zhangjinchao01 已提交
1388

Q
qijun 已提交
1389 1390
    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
Z
zhangjinchao01 已提交
1391 1392


1393 1394 1395 1396 1397 1398 1399 1400
def inputs(layers, *args):
    """
    Declare the inputs of network. The order of input should be as same as
    the data provider's return order.

    :param layers: Input Layers.
    :type layers: list|tuple|LayerOutput.
    :return:
Z
zhangjinchao01 已提交
1401 1402
    """

1403 1404 1405 1406
    if isinstance(layers, LayerOutput) or isinstance(layers, basestring):
        layers = [layers]
    if len(args) != 0:
        layers.extend(args)
Z
zhangjinchao01 已提交
1407

Z
Zhaolong Xing 已提交
1408
    Inputs(*[l.name for l in layers])
1409 1410 1411 1412 1413 1414 1415 1416


def outputs(layers, *args):
    """
    Declare the outputs of network. If user have not defined the inputs of
    network, this method will calculate the input order by dfs travel.

    :param layers: Output layers.
Z
zhangjinchao01 已提交
1417 1418 1419 1420
    :type layers: list|tuple|LayerOutput
    :return:
    """

1421 1422
    traveled = set()

Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    def __dfs_travel__(layer,
                       predicate=lambda x: x.layer_type == LayerType.DATA):
        """
        DFS LRV Travel for output layer.

        The return order is define order for data_layer in this leaf node.

        :param layer:
        :type layer: LayerOutput
        :return:
        """
1434 1435 1436 1437 1438
        if layer in traveled:
            return []
        else:
            traveled.add(layer)

Z
zhangjinchao01 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        assert isinstance(layer, LayerOutput), "layer is %s" % (layer)
        retv = []
        if layer.parents is not None:
            for p in layer.parents:
                retv.extend(__dfs_travel__(p, predicate))

        if predicate(layer):
            retv.append(layer)
        return retv

    if isinstance(layers, LayerOutput):
        layers = [layers]

1452 1453 1454
    if len(args) != 0:
        layers.extend(args)

Z
zhangjinchao01 已提交
1455
    assert len(layers) > 0
1456 1457

    if HasInputsSet():  # input already set
Z
Zhaolong Xing 已提交
1458
        Outputs(*[l.name for l in layers])
1459 1460
        return  # just return outputs.

Z
zhangjinchao01 已提交
1461
    if len(layers) != 1:
1462
        logger.warning("`outputs` routine try to calculate network's"
Z
zhangjinchao01 已提交
1463 1464 1465 1466 1467 1468 1469
                       " inputs and outputs order. It might not work well."
                       "Please see follow log carefully.")
    inputs = []
    outputs_ = []
    for each_layer in layers:
        assert isinstance(each_layer, LayerOutput)
        inputs.extend(__dfs_travel__(each_layer))
Q
qijun 已提交
1470 1471 1472
        outputs_.extend(
            __dfs_travel__(each_layer,
                           lambda x: x.layer_type == LayerType.COST))
Z
zhangjinchao01 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

    # Currently, we got each leaf node's inputs order, output order.
    # We merge them together.

    final_inputs = []
    final_outputs = []

    for each_input in inputs:
        assert isinstance(each_input, LayerOutput)
        if each_input.name not in final_inputs:
            final_inputs.append(each_input.name)

    for each_output in outputs_:
        assert isinstance(each_output, LayerOutput)
        if each_output.name not in final_outputs:
            final_outputs.append(each_output.name)

Q
qijun 已提交
1490
    logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
1491 1492 1493 1494

    if len(final_outputs) == 0:
        final_outputs = map(lambda x: x.name, layers)

Q
qijun 已提交
1495 1496
    logger.info("".join(
        ["The output order is [", ", ".join(final_outputs), "]"]))
Z
zhangjinchao01 已提交
1497 1498

    Inputs(*final_inputs)
1499
    Outputs(*final_outputs)