transpose_op.cc 4.5 KB
Newer Older
X
xzl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/transpose_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28 29 30
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Input"),
                            "Input(Input) should not be null");
    auto input_dim = ctx.Input<Tensor>("Input")->dims();
X
xzl 已提交
31
    auto axis = ctx.Attr<std::vector<int>>("axis");
32
    size_t input_dim_size = input_dim.size();
X
xzl 已提交
33
    size_t axis_size = axis.size();
X
xzl 已提交
34

35 36 37 38
    PADDLE_ENFORCE_EQ(input_dim_size, axis_size,
                      "the input tensor's dimension(%d) "
                      "should be equal to the axis's size(%d)",
                      input_dim_size, axis_size);
X
xzl 已提交
39 40 41 42

    std::vector<int> axis_sorted(axis);
    std::sort(axis_sorted.begin(), axis_sorted.end());
    for (size_t i = 0; i < axis_sorted.size(); i++) {
43
      PADDLE_ENFORCE_EQ(axis_sorted[i], static_cast<int>(i),
X
xzl 已提交
44
                        "the sorted axis should be [0, 1, ... dims - 1], "
45
                        "where the dims is the axis's size");
X
xzl 已提交
46
    }
X
xzl 已提交
47

48
    framework::DDim output_dim(input_dim);
X
xzl 已提交
49
    for (size_t i = 0; i < axis.size(); i++) {
50
      output_dim[i] = input_dim[axis[i]];
X
xzl 已提交
51
    }
52
    ctx.Output<framework::LoDTensor>("Output")->Resize(output_dim);
X
xzl 已提交
53 54 55 56 57 58 59 60
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TransposeOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
61 62 63 64
    AddInput(
        "Input",
        "(Tensor)The input tensor, tensors with rank at most 7 are supported");
    AddOutput("Output", "(Tensor)The output tensor");
X
xzl 已提交
65 66
    AddAttr<std::vector<int>>(
        "axis",
67
        "(vector<int>)a list of values, and the size of the list should be "
X
xzl 已提交
68 69
        "the same with the input tensor dimensions, the tensor will "
        "permute the axes according the the values given");
X
xzl 已提交
70
    AddComment(R"DOC(
X
xzl 已提交
71
The Tensor will be permuted according to the axis values given.
72 73 74 75 76 77 78 79 80 81 82 83 84
The op is very much like the numpy.transpose function in python
For example:
 >> input = numpy.arange(6).reshape((2,3))
 >> input
 array([[0, 1, 2],
        [3, 4, 5]])
 >> axis = [1, 0]
 >> output = input.transpose(axis)
 >> output 
 array([[0, 3],
        [1, 4],
		[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
X
xzl 已提交
85 86 87 88 89 90 91 92 93 94 95
the output tensor shape will be (N, H, W, C)
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Input"),
                            "Input(Input) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Output")),
                            "Input(Output@GRAD) should not be null");
    auto input_dims = ctx.Input<Tensor>("Input")->dims();
    auto *input_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Input"));

    auto output_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Output"))->dims();
    auto output_dims = ctx.Input<Tensor>("Output")->dims();

    PADDLE_ENFORCE(output_grad_dims == output_dims,
                   "Output@GRAD dims must equal to Input(Input) dims");

    input_grad->Resize(input_dims);
X
xzl 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
REGISTER_OP_CPU_KERNEL(transpose,
                       ops::TransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
    ops::TransposeGradKernel<paddle::platform::CPUPlace, float>);