operator.h 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36

Q
Qiao Longfei 已提交
37 38
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
39 40 41
namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53

M
minqiyang 已提交
54 55
constexpr size_t kGradVarSuffixSize = 5U;

56
/// Variables with this suffix are supposed to be filled up with zeros.
57
constexpr char kZeroVarSuffix[] = "@ZERO";
58

C
chengduo 已提交
59 60 61
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
62
// define some kernel priority
63
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
64 65
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

66
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
67 68 69 70 71
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
72 73
}

M
minqiyang 已提交
74
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
75
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
76 77 78 79 80
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
81 82
}

Q
qiaolongfei 已提交
83
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
84 85
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
86

Q
Qiao Longfei 已提交
87
class OperatorBase;
88
class ExecutionContext;
89

X
Xin Pan 已提交
90 91
class RuntimeContext {
 public:
X
Xin Pan 已提交
92 93
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
94

X
Xin Pan 已提交
95 96 97 98
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
99 100 101 102
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
103
/**
X
Xin Pan 已提交
104
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
105 106 107 108 109 110
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
111 112
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
113

Q
Qiao Longfei 已提交
114 115
  virtual ~OperatorBase() {}

116
  /// Executor will call this interface function to Run an op.
117 118
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
119

T
typhoonzero 已提交
120 121 122
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

123 124 125
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
126

127 128
  virtual bool SupportGPU() const { return false; }

129 130
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
131
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
132 133
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
134 135
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
136 137 138
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
139

Y
Yu Yang 已提交
140 141
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
142

143
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
144
  //! Get a input with argument's name described in `op_proto`
145
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
146
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
147
  const std::vector<std::string>& Inputs(const std::string& name) const;
148
  //! Get all inputs variable names
Q
qijun 已提交
149 150
  std::vector<std::string> InputVars() const;

151
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
152
  //! Get a output with argument's name described in `op_proto`
153
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
154 155
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
156
  const std::vector<std::string>& Outputs(const std::string& name) const;
157
  //! Get all outputs variable names
Y
Yu Yang 已提交
158
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
159

160
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
161
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
162 163
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
164

Q
qiaolongfei 已提交
165
 protected:
Q
Qiao Longfei 已提交
166
  std::string type_;
D
dongzhihong 已提交
167
  // NOTE: in case of OpGrad, inputs_ contains:
168
  // I (Inputs)
D
dongzhihong 已提交
169 170
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
171
  VariableNameMap inputs_;
Y
Yu Yang 已提交
172

D
dongzhihong 已提交
173 174
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
175
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
176
  AttributeMap attrs_;
177 178
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
179 180 181 182

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
183 184
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
template <typename TAlgorithm>
class AlgorithmsCache {
 public:
  AlgorithmsCache() : search_times_(0) { hash_.clear(); }
  // Caches the best algorithm for a given
  // combination of tensor dimensions & compute data type.
  TAlgorithm GetAlgorithm(
      const std::vector<int64_t>& dims1, const std::vector<int64_t>& dims2,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::vector<int>& dilations,
      int algorithmFlags,  // can set for different data type
      std::function<TAlgorithm()> gen_func);

  TAlgorithm GetAlgorithm(int64_t area, int search_times, int algorithmFlags,
                          std::function<TAlgorithm()> gen_func);

 private:
  std::unordered_map<int64_t, TAlgorithm> hash_;
  std::mutex mutex_;

  int search_times_;
};

template <typename TAlgorithm>
TAlgorithm framework::AlgorithmsCache<TAlgorithm>::GetAlgorithm(
    const std::vector<int64_t>& dims1, const std::vector<int64_t>& dims2,
    const std::vector<int>& strides, const std::vector<int>& paddings,
    const std::vector<int>& dilations, int algorithmFlags,
    std::function<TAlgorithm()> gen_func) {
  std::lock_guard<std::mutex> lock(mutex_);
  int64_t seed = 0;
  // Hash all of the inputs, use to try and look up a previously
  // discovered algorithm, or fall back to generating a new one.
  std::hash<int64_t> hashFn;
  // do hash like boost
  // https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
  for (const auto num : dims1) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
  }

  for (const auto num : dims2) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 1;
  }

  for (const auto num : strides) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 2;
  }

  for (const auto num : paddings) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 3;
  }

  for (const auto num : dilations) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 4;
  }

  seed ^= hashFn(static_cast<int64_t>(algorithmFlags)) + 0x9e3779b9 +
          (seed << 6) + (seed >> 2) + 5;

  if (seed == 0) return gen_func();

  if (hash_.find(seed) == hash_.end()) {
    TAlgorithm value = gen_func();
    hash_[seed] = value;
  }
  return hash_[seed];
}

template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
    int64_t area, int search_times, int algorithmFlags,
    std::function<TAlgorithm()> gen_func) {
  if (hash_.find(area) != hash_.end()) {
    return hash_[area];
  }
  if (search_times_ < search_times) {
    auto algo = gen_func();
    hash_[area] = algo;
    ++search_times_;
    return algo;
  }
  TAlgorithm algo;
  int64_t min = static_cast<uint64_t>(INT_MAX);
  for (const auto& m : hash_) {
    if (m.first < min) {
      min = m.first;
      algo = m.second;
    }
  }
  return algo;
}

#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

295
class ExecutionContext {
Y
Yan Chunwei 已提交
296
 public:
297
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
298
                   const platform::DeviceContext& device_context,
299 300 301 302 303 304 305
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
306

Q
qiaolongfei 已提交
307 308 309 310
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
311
  template <typename T>
Y
Yu Yang 已提交
312 313
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
314 315
  }

316
  bool HasInput(const std::string& name) const;
317

318
  bool HasOutput(const std::string& name) const;
319

Y
Yu Yang 已提交
320
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
321
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
322 323
  }

Y
Yu Yang 已提交
324
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
325
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
326 327
  }

X
Xin Pan 已提交
328
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
329

X
Xin Pan 已提交
330
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
331

332 333
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
334 335 336 337
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
338
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
354
    res.reserve(names.size());
355 356
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
357 358
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
359
                   });
Y
Yan Chunwei 已提交
360 361 362
    return res;
  }

X
Xin Pan 已提交
363
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
364
    auto names = op_.Outputs(name);
365
    std::vector<Variable*> res;
366
    res.reserve(names.size());
367 368
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
369 370
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
371
                   });
Y
Yan Chunwei 已提交
372 373 374
    return res;
  }

375 376
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
377
    auto* var = InputVar(name);
378
    return var == nullptr ? nullptr : &var->Get<T>();
379 380 381 382
  }

  template <typename T>
  T* Output(const std::string& name) const {
383
    auto var = OutputVar(name);
384
    return var == nullptr ? nullptr : var->GetMutable<T>();
385 386
  }

X
Xin Pan 已提交
387
  template <typename T>
X
clean  
Xin Pan 已提交
388 389
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
390 391 392 393
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
394 395
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
396 397 398
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
399
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
400

X
clean  
Xin Pan 已提交
401
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
402

403 404
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
437 438 439 440
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
441
                   [&](const std::string& sub_name) -> const T* {
442
                     auto var = scope_.FindVar(sub_name);
443
                     return var == nullptr ? nullptr : &var->Get<T>();
444 445 446 447 448
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
449
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
450
    auto names = op_.Outputs(name);
451
    std::vector<T*> res;
452 453
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
454
                   [&](const std::string& sub_name) -> T* {
455
                     auto var = scope_.FindVar(sub_name);
456
                     return var == nullptr ? nullptr : var->GetMutable<T>();
457 458 459 460
                   });
    return res;
  }

461
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
462

Q
QI JUN 已提交
463 464 465 466 467
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

468
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
469
    return device_context_;
Q
qijun 已提交
470
  }
Q
qijun 已提交
471

Q
QI JUN 已提交
472 473 474 475 476 477 478 479
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
480
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
481 482 483
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
484

D
dzhwinter 已提交
485
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
486 487 488 489
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
504
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
505 506 507 508 509 510 511 512 513
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

514 515 516 517 518 519 520 521
  template <typename T>
  T& GetKernelConfig(int idx) const {
    PADDLE_ENFORCE(kernel_configs_ && kernel_configs_->size() > idx,
                   "%s selected kernel doesn't have kernel config %lu <= %d",
                   op_.Type().c_str(), kernel_configs_->size(), idx);
    return *boost::get<std::shared_ptr<T>>(kernel_configs_->at(idx));
  }

522
 private:
523 524
  const OperatorBase& op_;
  const Scope& scope_;
525
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
526
  const RuntimeContext& ctx_;
527
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
528 529
};

530 531 532
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
533
template <>
X
clean  
Xin Pan 已提交
534
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
535 536
    const std::string& name) const;

537 538 539 540
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
541 542 543 544
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

545 546 547
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
548
template <>
X
clean  
Xin Pan 已提交
549
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
550

551 552 553 554
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
555
class OpKernelBase {
Q
qijun 已提交
556
 public:
Q
qijun 已提交
557
  /**
558
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
559 560
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
561
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
562 563
   */

564
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
565

Y
Yu Yang 已提交
566 567 568 569 570 571 572
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
573 574
};

Y
Yu Yang 已提交
575 576
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
577
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
578
  using OpKernelMap =
Y
yuyang18 已提交
579
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
580

Y
Yu Yang 已提交
581 582
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
583 584
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
585 586 587 588
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
589
  }
Y
Yan Chunwei 已提交
590

591
  bool SupportGPU() const override {
Y
Yu Yang 已提交
592 593 594 595 596
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
597 598
  }

599 600 601
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
602

X
Xin Pan 已提交
603 604
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
605

606
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
607 608

 protected:
609 610 611
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
612 613

 private:
614
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
615
  // same.
616
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
617
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
618 619 620 621 622 623 624

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
625 626 627 628
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
629 630 631 632

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
633 634 635

 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
Q
Qiao Longfei 已提交
636 637
};

Y
Yu Yang 已提交
638 639
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
640 641
}  // namespace framework
}  // namespace paddle