backward.py 19.6 KB
Newer Older
Q
Qiao Longfei 已提交
1
from paddle.v2.fluid import framework as framework
F
update  
fengjiayi 已提交
2
from . import core
F
update  
fengjiayi 已提交
3
import collections
4
import copy
5

6
__all__ = ['append_backward', 'calc_gradient']
7 8


9 10
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
11
    Traverse all ops in op_descs[begin_idx : end_idx],
12 13
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
14 15 16
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
17
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
18
    for i in range(begin_idx, end_idx):
19
        op_desc = op_descs[i]
F
fengjiayi 已提交
20 21 22 23
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc.rename_input(old_name, new_name)
        op_desc.rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
24 25


F
fengjiayi 已提交
26
def _create_op_desc_(op_type, inputs, outputs, attrs):
27 28 29
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
    for para, args in inputs.iteritems():
        op_desc.set_input(para, args)
    for para, args in outputs.iteritems():
        op_desc.set_output(para, args)
    for name, val in attrs.iteritems():
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
            op_desc.set_attr(name, val)
    return op_desc


44 45 46 47 48 49
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
    grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
    fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
F
fengjiayi 已提交
50 51 52 53 54 55 56
    if block.desc.has_var_recursive(fwd_name):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
        grad_var.set_dtype(fwd_var.dtype())
    else:
        grad_var.set_dtype(core.DataType.FP32)


F
fengjiayi 已提交
57
def _all_in_set_(cands, s):
58 59 60
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
61 62
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
63 64 65 66 67 68
    for c in cands:
        if not c in s:
            return False
    return True


69 70 71 72 73 74 75 76 77 78 79 80
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
    for c in cands:
        if c in s:
            return True
    return False


F
fengjiayi 已提交
81
def _strip_grad_suffix_(name):
82 83 84 85 86
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
F
fengjiayi 已提交
87 88
    pos = name.find(core.grad_var_suffix())
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
89 90 91


def _append_grad_suffix_(name):
92 93 94 95
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
F
fengjiayi 已提交
96 97 98
    return name + core.grad_var_suffix()


F
fengjiayi 已提交
99
def _addup_repetitive_outputs_(op_descs):
100 101 102 103 104
    """
    In backward part, an variable may be the output of more than one ops.
    In this case, the variable should be the accumulation of all the outputs.
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
105 106
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
107 108
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
109
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
110 111 112 113 114
            if len(renamed_vars[var_name]) > 1:
                pending_sum_ops.append(
                    (_create_op_desc_("sum", {"X": renamed_vars[var_name]},
                                      {"Out": [var_name]}, {}), idx))
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
115
        for var_name in op_desc.output_arg_names():
F
fengjiayi 已提交
116 117 118
            if var_name == core.empty_var_name(
            ) or var_name in op_desc.input_arg_names():
                # empty variable or inplace op
F
fengjiayi 已提交
119
                continue
F
fengjiayi 已提交
120
            if len(renamed_vars[var_name]) == 0:
F
update  
fengjiayi 已提交
121
                # it's the first time we get the variable
F
fengjiayi 已提交
122
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
123
            else:
F
fengjiayi 已提交
124
                if len(renamed_vars[var_name]) == 1:
F
update  
fengjiayi 已提交
125 126
                    new_name = var_name + "@RENAME@" + \
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
127
                    var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
128
                    # rename original var_name
F
fengjiayi 已提交
129 130
                    renamed_vars[var_name][0] = new_name
                    _rename_arg_(op_descs, var_name, new_name, 0, idx)
F
fengjiayi 已提交
131
                    _rename_arg_(pending_sum_ops, var_name, new_name)
F
update  
fengjiayi 已提交
132 133 134

                new_name = var_name + "@RENAME@" + \
                    str(var_rename_count[var_name])
F
fengjiayi 已提交
135
                var_rename_count[var_name] += 1
F
update  
fengjiayi 已提交
136
                op_desc.rename_output(var_name, new_name)
F
fengjiayi 已提交
137 138
                renamed_vars[var_name].append(new_name)
    for var_name, inputs in renamed_vars.iteritems():
F
update  
fengjiayi 已提交
139
        if len(inputs) > 1:
F
fengjiayi 已提交
140
            pending_sum_ops.append((_create_op_desc_(
F
fengjiayi 已提交
141
                "sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
F
fengjiayi 已提交
142
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
143
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
144 145 146 147 148 149
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
150 151 152 153
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
154
        2. all grad inputs of the grad op are in 'no_grad_set'
155
    """
F
fengjiayi 已提交
156 157

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
158 159
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
160 161 162 163
            return True
        if _all_in_set_(
                filter(lambda name: name.find(core.grad_var_suffix()) != -1,
                       op_desc.input_arg_names()), no_grad_set):
F
fengjiayi 已提交
164
            no_grad_set.union(out_arg_names)
F
fengjiayi 已提交
165 166 167
            return True
        return False

F
fengjiayi 已提交
168 169
    # Remove ops whose outputs are all in no_grad_dict
    op_descs = filter(
F
fengjiayi 已提交
170
        lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
F
fengjiayi 已提交
171 172
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
173
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
174
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
175 176 177
            if core.grad_var_suffix() in arg and arg in no_grad_set:
                to_insert.append((_create_op_desc_("fill_zeros_like", {
                    "X": [_strip_grad_suffix_(arg)]
178
                }, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
179 180 181 182 183 184

    map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))

    return op_descs


185 186
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
187 188 189 190
                          target_block,
                          no_grad_dict,
                          grad_to_var,
                          callback=None):
191 192 193 194 195
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
196
        ops(Op): the forward operators whose backward ops need to be added
197
        target_block(Block): the block which is going to hold new generated grad ops
198
        no_grad_dict(dict):
199 200 201 202 203
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
204
        callback(callable object): a callable object used to decorate new generated grad ops
205
    """
F
fengjiayi 已提交
206 207
    if callback is None:

F
fix bug  
fengjiayi 已提交
208
        def empty_callback(block, context):
F
fengjiayi 已提交
209 210 211 212
            pass

        callback = empty_callback
    elif not hasattr(callback, '__call__'):
F
fengjiayi 已提交
213
        raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
214

F
fengjiayi 已提交
215
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
216 217
    grad_op_descs = []
    program = block.program
218
    for op in reversed(ops):
F
fengjiayi 已提交
219 220 221 222 223
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
            sub_block = program.block(op.block_attr("sub_block"))
            grad_sub_block = program.create_block(parent_idx=sub_block.idx)
224 225
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                  no_grad_dict, grad_to_var)
F
fengjiayi 已提交
226 227
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
228
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
229 230
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            op.desc, no_grad_dict[block.idx], grad_sub_block_list)
Y
Yang Yu 已提交
231

F
fengjiayi 已提交
232 233 234 235 236 237 238
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
239

F
fengjiayi 已提交
240
    # append op_desc in grad_op_descs to target_block
F
update  
fengjiayi 已提交
241
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
242 243
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
F
fengjiayi 已提交
244
        callback(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
245

F
fengjiayi 已提交
246 247

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
248 249 250 251 252 253 254 255 256 257 258 259
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
260
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
261
    """
F
fengjiayi 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
            sub_block = block.program.block(op_desc.block_attr("sub_block"))
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
            grad_var_name = grad_var_name.encode("ascii")
            if block.desc.has_var_recursive(
                    grad_var_name) or grad_var_name == core.empty_var_name():
                continue
            block.desc.var(grad_var_name)
            new_vars.add(grad_var_name)
            if not grad_to_var.has_key(grad_var_name):
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
285 286


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
                op_desc.rename_input(name, var_map[name])

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
                new_name = "%s_%s" % (name, core.unique_integer(name))
                op_desc.rename_output(name, new_name)
                var_map[name] = new_name

    for g, ng in var_map.iteritems():
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
        for var in block.vars.itervalues():
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


F
fengjiayi 已提交
321
def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
322
    """
F
fengjiayi 已提交
323 324 325 326
    Append backward part to main_program

    Args:
        loss(Variable): The variable generated by cost function.
327 328
        parameter_list(list[string]): Parameters that need to be updated by
            optimizer. If None, it means all parameters need to be updated.
329
        no_grad_set(set): Variables that have no gradients in Block 0.
330 331
            All variables with `step_gradient=True` from all blocks will be
            automatically added.
F
fengjiayi 已提交
332 333

    Return:
334
        (list[(Variable,Variable)]): list of (parameter, gradient) pair.
335 336
    """
    assert isinstance(loss, framework.Variable)
Y
Yu Yang 已提交
337

F
fengjiayi 已提交
338
    program = loss.block.program
F
fengjiayi 已提交
339
    if no_grad_set is None:
340 341 342 343
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
Y
Yu Yang 已提交
344

F
update  
fengjiayi 已提交
345
    grad_info_map = dict()
F
fengjiayi 已提交
346
    root_block = program.block(0)
F
fengjiayi 已提交
347

F
fengjiayi 已提交
348 349
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
350 351
    grad_to_var = dict()

352 353 354 355 356 357 358 359 360 361 362 363
    op_desc = _create_op_desc_("fill_constant", {}, {
        "Out": [_append_grad_suffix_(loss.name)]
    }, {"shape": [1],
        "value": 1.0,
        "dtype": loss.dtype})
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
F
fengjiayi 已提交
364
                          grad_to_var, callback)
365 366 367 368 369 370

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
371
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
372

F
fengjiayi 已提交
373 374
    program.current_block_idx = current_block_idx
    program.sync_with_cpp()
F
fengjiayi 已提交
375

376 377 378
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
379
        params = program.global_block().all_parameters()
380
        parameters = [param.name for param in params]
381

382 383
    params_and_grads = []
    for param in parameters:
F
update  
fengjiayi 已提交
384
        if param not in grad_info_map:
385
            raise ValueError("param %s is not in map" % param)
F
update  
fengjiayi 已提交
386
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
387
        grad_block = grad_info[1]
388 389 390 391
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
392
        param_var = program.global_block().var(param)
393 394 395 396 397 398
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
    return params_and_grads
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
                if name not in input_names:
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
    no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
    no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
    prog.sync_with_cpp()

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars