c_allreduce_op.h 16.7 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18

19
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
20 21 22
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
23 24
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
25
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
26
#include "paddle/phi/api/include/tensor.h"
27

Z
zn 已提交
28 29 30
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL) || \
    defined(PADDLE_WITH_CNCL)
31
#include "paddle/fluid/platform/collective_helper.h"
32 33 34
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
35
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
36 37
#endif

38
#if defined(PADDLE_WITH_XPU_BKCL)
39
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
40 41
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

47
#if defined(PADDLE_WITH_ASCEND_CL)
48
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
49 50
#endif

Z
zn 已提交
51 52 53 54
#if defined(PADDLE_WITH_CNCL)
#include "paddle/fluid/platform/device/mlu/cncl_helper.h"
#endif

55 56 57 58
#if defined(PADDLE_WITH_ASCEND_CL)
DECLARE_bool(hccl_check_nan);
#endif

59 60 61
namespace paddle {
namespace operators {

62 63 64 65 66 67 68 69 70 71 72 73 74
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
75 76
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
77 78 79 80 81 82 83
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
131 132 133
  }
};

134
#if defined(PADDLE_WITH_ASCEND_CL)
135 136 137 138
// return true if found_nan or return false;
inline bool ContainsNan(const paddle::platform::NPUDeviceContext& dev_ctx,
                        aclrtStream stream,
                        const paddle::framework::Tensor* in) {
139 140
  using Tensor = paddle::framework::Tensor;
  Tensor out(in->type());
141

142 143 144 145 146 147 148
  Tensor mean(in->type());
  mean.Resize({1});
  mean.mutable_data<float>(dev_ctx.GetPlace());
  std::vector<int> axes;
  for (int i = 0; i < in->dims().size(); ++i) {
    axes.push_back(i);
  }
149

150
  std::vector<float> vec;
151
  try {
152 153
    const auto& runner_mean = paddle::operators::NpuOpRunner(
        "ReduceMeanD", {*in}, {mean}, {{"axes", axes}, {"keep_dims", false}});
154
    paddle::framework::TensorToVector(mean, dev_ctx, &vec);
155
  } catch (...) {
156 157 158 159 160 161 162 163 164 165 166 167
    LOG(WARNING) << "ContainsNan catch exception";
    return true;
  }

  VLOG(4) << "reducemeand result:" << vec[0];
  if (std::isnan(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects nan";
    return true;
  }

  if (std::isinf(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects inf";
168 169
  }

170
  return false;
171
}
172

173 174
#endif

175 176 177 178 179
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
180 181
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
182
    auto place = ctx.GetPlace();
183 184
    HcclDataType dtype =
        platform::ToHCCLDataType(framework::TransToProtoVarType(in->dtype()));
185 186 187
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
188
    out->mutable_data<T>(in->dims(), ctx.GetPlace());
189 190 191 192 193 194 195 196 197
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
198 199
    auto dev_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
200
    if (ctx.Attr<bool>("use_calc_stream")) {
201
      stream = dev_ctx->stream();
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    } else {
      stream = comm->stream();
    }

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

229 230 231 232 233 234 235 236 237 238 239
    VLOG(3) << "hccl allreduce, parameter is: "
            << "input num: " << in->dims() << "dtype: " << dtype
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size()
            << ", use_calc_stream:" << ctx.Attr<bool>("use_calc_stream")
            << ", stream:" << stream;

    framework::Tensor tmp;
    tmp.mutable_data<float>({8}, ctx.GetPlace());

240
    bool found_nan = false;
241

242
    auto d_type = framework::TransToProtoVarType(in->dtype());
243
    switch (d_type) {
244 245 246
      case framework::proto::VarType::FP16: {
        break;
      }
247
      case framework::proto::VarType::FP32: {
248 249
        if (FLAGS_hccl_check_nan) {
          VLOG(3) << "prepare to FoundNanInf";
Y
Yuang Liu 已提交
250 251
          // NOTE: performance relating, DO NOT REMOVE!
          ContainsNan(*dev_ctx, dev_ctx->stream(), in);
252
        }
253 254 255 256 257 258
        break;
      }
      default:
        break;
    }

259
    if (found_nan) {
260 261 262 263 264 265 266 267 268
      T inf = static_cast<T>(std::numeric_limits<float>::infinity());
      VLOG(4) << "fill input data constant inf";
      auto dims = in->dims();
      auto mutable_in = const_cast<framework::Tensor*>(in);
      FillNpuTensorWithConstant<T>(mutable_in, inf);
      mutable_in->Resize(dims);
    }

    VLOG(3) << "hccl allreduce, parameter is: "
269
            << "input num: " << numel << "dtype: " << dtype
270 271 272
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size();
273 274 275 276 277 278 279 280 281 282 283 284 285

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
        sendbuff, recvbuff, numel, dtype, hccl_red_type, comm->comm(),
        reinterpret_cast<void*>(stream)));

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

286 287 288 289 290 291 292 293 294
template <ReduceType red_type, typename T>
class CAllReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
295 296
    BKCLDataType dtype =
        platform::ToBKCLDataType(framework::TransToProtoVarType(in->dtype()));
297
    int64_t numel = in->numel();
298
    const void* sendbuff = in->data<T>();
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_EQ(bkcl_all_reduce(comm->comm(), sendbuff, recvbuff, numel,
                                      dtype, bkcl_red_type, stream),
                      BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                        "BKCL all reduce failed"));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

349 350
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
351 352
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
353
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
354 355
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
356
    int rid = ctx.Attr<int>("ring_id");
357

358
    auto place = ctx.GetPlace();
359 360
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(in->dtype()));
361
    int64_t numel = in->numel();
362
    const void* sendbuff = in->data<T>();
363 364 365
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup* pg = map->get(rid);
      std::vector<phi::DenseTensor> in_tensor;
      std::vector<phi::DenseTensor> out_tensor;
      in_tensor.push_back(*in);
      out_tensor.push_back(*out);

      distributed::AllreduceOptions opts;
      switch (red_type) {
        case kRedSum:
          opts.reduce_op = distributed::ReduceOp::SUM;
          break;

        case kRedMax:
          opts.reduce_op = distributed::ReduceOp::MAX;
          break;

        case kRedMin:
          opts.reduce_op = distributed::ReduceOp::MIN;
          break;

        case kRedProd:
          opts.reduce_op = distributed::ReduceOp::PRODUCT;
          break;

        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Invalid reduce type: %d", red_type));
      }

      auto task = pg->AllReduce(in_tensor, out_tensor, opts);
      task->Wait();
      return;
    }

403
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
404

405
    gpuStream_t stream = nullptr;
406 407 408 409 410 411 412
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
432 433
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
434 435
    }

436
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
437
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
438
#else
M
MRXLT 已提交
439 440
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
441 442 443 444
#endif
  }
};

Z
zn 已提交
445 446 447 448 449 450 451 452 453 454
template <ReduceType red_type, typename T>
class CAllReduceOpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_CNCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    cnclDataType_t dtype =
Z
zn 已提交
455
        platform::ToCNCLDataType(framework::TransToProtoVarType(in->dtype()));
Z
zn 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    int64_t numel = in->numel();
    const void* sendbuff = in->data<T>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::CNCLCommContext::Instance().Get(rid, place);

    mluStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::MLUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    cnclReduceOp_t cncl_red_type = cnclSum;
    switch (red_type) {
      case kRedSum:
        cncl_red_type = cnclSum;
        break;

      case kRedMax:
        cncl_red_type = cnclMax;
        break;

      case kRedMin:
        cncl_red_type = cnclMin;
        break;

      case kRedProd:
        cncl_red_type = cnclProd;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_MLU_SUCCESS(cnclAllReduce(
        sendbuff, recvbuff, numel, dtype, cncl_red_type, comm->comm(), stream));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with MLU."));
#endif
  }
};

504 505 506 507 508 509 510
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
511 512 513 514
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
515 516 517 518
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
L
lilong12 已提交
519 520 521 522 523 524
    AddAttr<bool>(
        "use_model_parallel",
        "(bool default false) use this op with model parallel mode. In model "
        "parallel mode, the backward is c_identity which returns itself for "
        "c_allreduce_sum.")
        .SetDefault(false);
525 526 527 528 529 530 531 532 533 534 535 536 537 538
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

539 540
}  // namespace operators
}  // namespace paddle