c_allreduce_op.h 13.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18 19 20 21

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
22 23
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
25

26
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
27
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL)
28
#include "paddle/fluid/platform/collective_helper.h"
29 30 31
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
32
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
33 34
#endif

35
#if defined(PADDLE_WITH_XPU_BKCL)
36
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
37 38
#endif

39 40 41 42 43
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

44
#if defined(PADDLE_WITH_ASCEND_CL)
45
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
46 47
#endif

48 49 50 51
#if defined(PADDLE_WITH_ASCEND_CL)
DECLARE_bool(hccl_check_nan);
#endif

52 53 54
namespace paddle {
namespace operators {

55 56 57 58 59 60 61 62 63 64 65 66 67
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
68 69
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
70 71 72 73 74 75 76
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
124 125 126
  }
};

127
#if defined(PADDLE_WITH_ASCEND_CL)
128 129 130 131
// return true if found_nan or return false;
inline bool ContainsNan(const paddle::platform::NPUDeviceContext& dev_ctx,
                        aclrtStream stream,
                        const paddle::framework::Tensor* in) {
132 133
  using Tensor = paddle::framework::Tensor;
  Tensor out(in->type());
134

135 136 137 138 139 140 141
  Tensor mean(in->type());
  mean.Resize({1});
  mean.mutable_data<float>(dev_ctx.GetPlace());
  std::vector<int> axes;
  for (int i = 0; i < in->dims().size(); ++i) {
    axes.push_back(i);
  }
142

143
  std::vector<float> vec;
144
  try {
145 146
    const auto& runner_mean = paddle::operators::NpuOpRunner(
        "ReduceMeanD", {*in}, {mean}, {{"axes", axes}, {"keep_dims", false}});
147
    paddle::framework::TensorToVector(mean, dev_ctx, &vec);
148
  } catch (...) {
149 150 151 152 153 154 155 156 157 158 159 160
    LOG(WARNING) << "ContainsNan catch exception";
    return true;
  }

  VLOG(4) << "reducemeand result:" << vec[0];
  if (std::isnan(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects nan";
    return true;
  }

  if (std::isinf(static_cast<float>(vec[0]))) {
    LOG(WARNING) << "ContainsNan detects inf";
161 162
  }

163
  return false;
164
}
165

166 167
#endif

168 169 170 171 172
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
173 174
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
175
    auto place = ctx.GetPlace();
176 177
    HcclDataType dtype =
        platform::ToHCCLDataType(framework::TransToProtoVarType(in->dtype()));
178 179 180
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
181
    out->mutable_data<T>(in->dims(), ctx.GetPlace());
182 183 184 185 186 187 188 189 190
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
191 192
    auto dev_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
193
    if (ctx.Attr<bool>("use_calc_stream")) {
194
      stream = dev_ctx->stream();
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    } else {
      stream = comm->stream();
    }

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

222 223 224 225 226 227 228 229 230 231 232
    VLOG(3) << "hccl allreduce, parameter is: "
            << "input num: " << in->dims() << "dtype: " << dtype
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size()
            << ", use_calc_stream:" << ctx.Attr<bool>("use_calc_stream")
            << ", stream:" << stream;

    framework::Tensor tmp;
    tmp.mutable_data<float>({8}, ctx.GetPlace());

233
    bool found_nan = false;
234

235
    auto d_type = framework::TransToProtoVarType(in->dtype());
236
    switch (d_type) {
237 238 239
      case framework::proto::VarType::FP16: {
        break;
      }
240
      case framework::proto::VarType::FP32: {
241 242
        if (FLAGS_hccl_check_nan) {
          VLOG(3) << "prepare to FoundNanInf";
Y
Yuang Liu 已提交
243 244
          // NOTE: performance relating, DO NOT REMOVE!
          ContainsNan(*dev_ctx, dev_ctx->stream(), in);
245
        }
246 247 248 249 250 251
        break;
      }
      default:
        break;
    }

252
    if (found_nan) {
253 254 255 256 257 258 259 260 261
      T inf = static_cast<T>(std::numeric_limits<float>::infinity());
      VLOG(4) << "fill input data constant inf";
      auto dims = in->dims();
      auto mutable_in = const_cast<framework::Tensor*>(in);
      FillNpuTensorWithConstant<T>(mutable_in, inf);
      mutable_in->Resize(dims);
    }

    VLOG(3) << "hccl allreduce, parameter is: "
262
            << "input num: " << numel << "dtype: " << dtype
263 264 265
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size();
266 267 268 269 270 271 272 273 274 275 276 277 278

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
        sendbuff, recvbuff, numel, dtype, hccl_red_type, comm->comm(),
        reinterpret_cast<void*>(stream)));

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

279 280 281 282 283 284 285 286 287
template <ReduceType red_type, typename T>
class CAllReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
288 289
    BKCLDataType dtype =
        platform::ToBKCLDataType(framework::TransToProtoVarType(in->dtype()));
290
    int64_t numel = in->numel();
291
    const void* sendbuff = in->data<T>();
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_EQ(bkcl_all_reduce(comm->comm(), sendbuff, recvbuff, numel,
                                      dtype, bkcl_red_type, stream),
                      BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                        "BKCL all reduce failed"));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

342 343
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
344 345
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
346
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
347 348 349
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

350
    auto place = ctx.GetPlace();
351 352
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(in->dtype()));
353
    int64_t numel = in->numel();
354
    const void* sendbuff = in->data<T>();
355 356 357 358
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
359
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
360

361
    gpuStream_t stream = nullptr;
362 363 364 365 366 367 368
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
388 389
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
390 391
    }

392
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
393
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
394
#else
M
MRXLT 已提交
395 396
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
397 398 399 400
#endif
  }
};

401 402 403 404 405 406 407
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
408 409 410 411
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
412 413 414 415
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
L
lilong12 已提交
416 417 418 419 420 421
    AddAttr<bool>(
        "use_model_parallel",
        "(bool default false) use this op with model parallel mode. In model "
        "parallel mode, the backward is c_identity which returns itself for "
        "c_allreduce_sum.")
        .SetDefault(false);
422 423 424 425 426 427 428 429 430 431 432 433 434 435
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

436 437
}  // namespace operators
}  // namespace paddle