detection_map_op.cc 7.0 KB
Newer Older
W
wanghaox 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/detection_map_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("Detection"),
                   "Input(Detection) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasOutput("OutPosCount"),
                   "Output(OutPosCount) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutTruePos"),
                   "Output(OutTruePos) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("OutFalsePos"),
                   "Output(OutFalsePos) of DetectionMAPOp should not be null.");
W
wanghaox 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    PADDLE_ENFORCE(ctx->HasOutput("MAP"),
                   "Output(MAP) of DetectionMAPOp should not be null.");

    auto det_dims = ctx->GetInputDim("Detection");
    PADDLE_ENFORCE_EQ(det_dims.size(), 2UL,
                      "The rank of Input(Detection) must be 2, "
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(det_dims[1], 6UL,
                      "The shape is of Input(Detection) [N, 6].");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "The rank of Input(Label) must be 2, "
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(label_dims[1], 6UL,
                      "The shape is of Input(Label) [N, 6].");

W
wanghaox 已提交
53 54 55 56 57
    auto map_dim = framework::make_ddim({1});
    ctx->SetOutputDim("MAP", map_dim);
  }

 protected:
W
wanghaox 已提交
58
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
59 60
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
W
wanghaox 已提交
61 62
        framework::ToDataType(
            ctx.Input<framework::Tensor>("Detection")->type()),
W
wanghaox 已提交
63 64 65 66 67 68
        ctx.device_context());
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
wanghaox 已提交
69
  DetectionMAPOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaox 已提交
70
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaox 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    AddInput("Label",
             "(LoDTensor) A 2-D LoDTensor with shape[N, 6] represents the"
             "Labeled ground-truth data. Each row has 6 values: "
             "[label, is_difficult, xmin, ymin, xmax, ymax], N is the total "
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
    AddInput("Detection",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detections in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
W
wanghaox 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    AddInput("PosCount",
             "(Tensor) A tensor with shape [Ncls, 1], store the "
             "input positive example count of each class.")
        .AsDispensable();
    AddInput("TruePos",
             "(LodTensor) A 2-D LodTensor with shape [Ntp, 2], store the "
             "input true positive example of each class.")
        .AsDispensable();
    AddInput("FalsePos",
             "(LodTensor) A 2-D LodTensor with shape [Nfp, 2], store the "
             "input false positive example of each class.")
        .AsDispensable();
    AddOutput("OutPosCount",
              "(Tensor) A tensor with shape [Ncls, 1], store the "
              "positive example count of each class. It combines the input "
              "input(PosCount) and the positive example count computed from "
              "input(Detection) and input(Label).");
    AddOutput("OutTruePos",
              "(LodTensor) A LodTensor with shape [Ntp', 2], store the "
              "true positive example of each class. It combines the "
              "input(TruePos) and the true positive examples computed from "
              "input(Detection) and input(Label).");
    AddOutput("OutFalsePos",
              "(LodTensor) A LodTensor with shape [Nfp', 2], store the "
              "false positive example of each class. It combines the "
              "input(FalsePos) and the false positive examples computed from "
              "input(Detection) and input(Label).");
W
wanghaox 已提交
114 115 116 117 118 119 120 121
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");

    AddAttr<float>("overlap_threshold",
                   "(float) "
                   "The jaccard overlap threshold of detection output and "
                   "ground-truth data.")
W
wanghaox 已提交
122 123
        .SetDefault(.3f);
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
124
                  "(bool, default true) "
W
wanghaox 已提交
125 126 127
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
128 129 130
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
W
wanghaox 已提交
131 132 133 134 135
        .InEnum({"integral", "11point"})
        .AddCustomChecker([](const std::string& ap_type) {
          PADDLE_ENFORCE_NE(GetAPType(ap_type), APType::kNone,
                            "The ap_type should be 'integral' or '11point.");
        });
W
wanghaox 已提交
136
    AddComment(R"DOC(
W
wanghaox 已提交
137 138 139 140 141 142 143 144
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
 false positive according to the input of detection and labels, then
 calculate the mAP evaluate value.
 Supporting '11 point' and 'integral' mAP algorithm. Please get more information
 from the following articles:
 https://sanchom.wordpress.com/tag/average-precision/
 https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
145 146 147 148 149 150 151 152 153 154 155 156

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp,
                             ops::DetectionMAPOpMaker);
REGISTER_OP_CPU_KERNEL(
W
wanghaox 已提交
157 158
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>);