detection_map_op.cc 5.2 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/detection_map_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class DetectionMAPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    PADDLE_ENFORCE(ctx->HasInput("Detection"),
                   "Input(Detection) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of DetectionMAPOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MAP"),
                   "Output(MAP) of DetectionMAPOp should not be null.");

    auto det_dims = ctx->GetInputDim("Detection");
    PADDLE_ENFORCE_EQ(det_dims.size(), 2UL,
                      "The rank of Input(Detection) must be 2, "
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(det_dims[1], 6UL,
                      "The shape is of Input(Detection) [N, 6].");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "The rank of Input(Label) must be 2, "
                      "the shape is [N, 6].");
    PADDLE_ENFORCE_EQ(label_dims[1], 6UL,
                      "The shape is of Input(Label) [N, 6].");

    auto ap_type = GetAPType(ctx->Attrs().Get<std::string>("ap_type"));
    PADDLE_ENFORCE_NE(ap_type, APType::kNone,
                      "The ap_type should be 'integral' or '11point.");
W
wanghaox 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto map_dim = framework::make_ddim({1});
    ctx->SetOutputDim("MAP", map_dim);
  }

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("Label")->type()),
        ctx.device_context());
  }
};

class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  DetectionMAPOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaox 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    AddInput("Label",
             "(LoDTensor) A 2-D LoDTensor with shape[N, 6] represents the"
             "Labeled ground-truth data. Each row has 6 values: "
             "[label, is_difficult, xmin, ymin, xmax, ymax], N is the total "
             "number of ground-truth data in this mini-batch. For each "
             "instance, the offsets in first dimension are called LoD, "
             "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, "
             "means there is no ground-truth data.");
    AddInput("Detection",
             "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the "
             "detections. Each row has 6 values: "
             "[label, confidence, xmin, ymin, xmax, ymax], M is the total "
             "number of detections in this mini-batch. For each instance, "
             "the offsets in first dimension are called LoD, the number of "
             "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
             "no detected data.");
    AddOutput("MAP",
              "(Tensor) A tensor with shape [1], store the mAP evaluate "
              "result of the detection.");

    AddAttr<float>("overlap_threshold",
                   "(float) "
                   "The jaccard overlap threshold of detection output and "
                   "ground-truth data.")
W
wanghaox 已提交
92 93
        .SetDefault(.3f);
    AddAttr<bool>("evaluate_difficult",
W
wanghaox 已提交
94
                  "(bool, default true) "
W
wanghaox 已提交
95 96 97
                  "Switch to control whether the difficult data is evaluated.")
        .SetDefault(true);
    AddAttr<std::string>("ap_type",
W
wanghaox 已提交
98 99 100 101
                         "(string, default 'integral') "
                         "The AP algorithm type, 'integral' or '11point'.")
        .SetDefault("integral")
        .InEnum({"integral", "11point"});
W
wanghaox 已提交
102
    AddComment(R"DOC(
W
wanghaox 已提交
103 104 105 106 107 108 109 110
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
 false positive according to the input of detection and labels, then
 calculate the mAP evaluate value.
 Supporting '11 point' and 'integral' mAP algorithm. Please get more information
 from the following articles:
 https://sanchom.wordpress.com/tag/average-precision/
 https://arxiv.org/abs/1512.02325
W
wanghaox 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp,
                             ops::DetectionMAPOpMaker);
REGISTER_OP_CPU_KERNEL(
    detection_map, ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, float>,
    ops::DetectionMAPOpKernel<paddle::platform::GPUPlace, double>);